前言:本站為你精心整理了神經網絡的優點及應用分析范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
編者按:本文主要從前言;神經網絡應用現狀;神經網絡發展趨勢及研究熱點;結論,對神經網絡的優點及應用分析進行講述。其中,主要包括:具有很強的魯棒性和容錯性,因為信息是分布貯于網絡內的神經元中、對機器人眼手系統位置進行協調控制,用于機械手的故障診斷及排除、智能自適應移動機器人的導航增強神經網絡的可理解性是神經網絡界需要解決的一個重要問題、神經網絡與專家系統的結合、神經網絡與小波分析的結合、經過半個多世紀的發展,神經網絡理論在模式識別、自動控制、信號處理、輔助決策、人工智能等眾多研究領域取得了廣泛的成功,但其理論分析方法和設計方法還有待于進一步發展,具體材料請詳見:
[摘要]該文介紹了神經網絡的發展、優點及其應用和發展動向,著重論述了神經網絡目前的幾個研究熱點,即神經網絡與遺傳算法、灰色系統、專家系統、模糊控制、小波分析的結合。
[關鍵詞]遺傳算法灰色系統專家系統模糊控制小波分析
一、前言
神經網絡最早的研究20世紀40年代心理學家Mcculloch和數學家Pitts合作提出的,他們提出的MP模型拉開了神經網絡研究的序幕。神經網絡的發展大致經過三個階段:1947~1969年為初期,在這期間科學家們提出了許多神經元模型和學習規則,如MP模型、HEBB學習規則和感知器等;1970~1986年為過渡期,這個期間神經網絡研究經過了一個低潮,繼續發展。在此期間,科學家們做了大量的工作,如Hopfield教授對網絡引入能量函數的概念,給出了網絡的穩定性判據,提出了用于聯想記憶和優化計算的途徑。1984年,Hiton教授提出Boltzman機模型。1986年Kumelhart等人提出誤差反向傳播神經網絡,簡稱BP網絡。目前,BP網絡已成為廣泛使用的網絡;1987年至今為發展期,在此期間,神經網絡受到國際重視,各個國家都展開研究,形成神經網絡發展的另一個高潮。神經網絡具有以下優點:
(1)具有很強的魯棒性和容錯性,因為信息是分布貯于網絡內的神經元中。
(2)并行處理方法,使得計算快速。
(3)自學習、自組織、自適應性,使得網絡可以處理不確定或不知道的系統。
(4)可以充分逼近任意復雜的非線性關系。
(5)具有很強的信息綜合能力,能同時處理定量和定性的信息,能很好地協調多種輸入信息關系,適用于多信息融合和多媒體技術。
二、神經網絡應用現狀
神經網絡以其獨特的結構和處理信息的方法,在許多實際應用領域中取得了顯著的成效,主要應用如下:
(1)圖像處理。對圖像進行邊緣監測、圖像分割、圖像壓縮和圖像恢復。
(2)信號處理。能分別對通訊、語音、心電和腦電信號進行處理分類;可用于海底聲納信號的檢測與分類,在反潛、掃雷等方面得到應用。
(3)模式識別。已成功應用于手寫字符、汽車牌照、指紋和聲音識別,還可用于目標的自動識別和定位、機器人傳感器的圖像識別以及地震信號的鑒別等。
(4)機器人控制。對機器人眼手系統位置進行協調控制,用于機械手的故障診斷及排除、智能自適應移動機器人的導航。
(5)衛生保健、醫療。比如通過訓練自主組合的多層感知器可以區分正常心跳和非正常心跳、基于BP網絡的波形分類和特征提取在計算機臨床診斷中的應用。
(6)焊接領域。國內外在參數選擇、質量檢驗、質量預測和實時控制方面都有研究,部分成果已得到應用。
(7)經濟。能對商品價格、股票價格和企業的可信度等進行短期預測。
(8)另外,在數據挖掘、電力系統、交通、軍事、礦業、農業和氣象等方面亦有應用。
三、神經網絡發展趨勢及研究熱點
1.神經網絡研究動向
神經網絡雖已在許多領域應用中取得了廣泛的成功,但其發展還不十分成熟,還有一些問題需進一步研究。
(1)神經計算的基礎理論框架以及生理層面的研究仍需深入。這方面的工作雖然很困難,但為了神經計算的進一步發展卻是非做不可的。
(2)除了傳統的多層感知機、徑向基函數網絡、自組織特征映射網絡、自適應諧振理論網絡、模糊神經網絡、循環神經網絡之外,一些新的模型和結構很值得關注,例如最近興起的脈沖神經網絡(spikingneuralnetwork)和支持向量機(supportvectormachine)。
(3)神經計算技術與其他技術尤其是進化計算技術的結合以及由此而來的混合方法和混合系統,正成為一大研究熱點。
(4)增強神經網絡的可理解性是神經網絡界需要解決的一個重要問題。這方面的工作在今后若干年中仍然會是神經計算和機器學習界的一個研究熱點。
(5)神經網絡的應用領域將不斷擴大,在未來的幾年中有望在一些領域取得更大的成功,特別是多媒體技術、醫療、金融、電力系統等領域。
2.研究熱點
(1)神經網絡與遺傳算法的結合。遺傳算法與神經網絡的結合主要體現在以下幾個方面:網絡連接權重的進化訓練;網絡結構的進化計算;網絡結構和連接權重的同時進化;訓練算法的進化設計。基于進化計算的神經網絡設計和實現已在眾多領域得到應用,如模式識別、機器人控制、財政等,并取得了較傳統神經網絡更好的性能和結果。但從總體上看,這方面研究還處于初期階段,理論方法有待于完善規范,應用研究有待于加強提高。神經網絡與進化算法相結合的其他方式也有待于進一步研究和挖掘。
(2)神經網絡與灰色系統的結合。灰色系統理論是一門極有生命力的系統科學理論,自1982年華中理工大學的鄧聚龍教授提出灰色系統后迅速發展,以初步形成以灰色關聯空間為基礎的分析體系,以灰色模型為主體的模型體系,以灰色過程及其生存空間為基礎與內的方法體系,以系統分析、建模、預測、決策、控制、評估為綱的技術體系。目前,國內外對灰色系統的理論和應用研究已經廣泛開展,受到學者的普遍關注。灰色系統理論在在處理不確定性問題上有其獨到之處,并能以系統的離散時序建立連續的時間模型,適合于解決無法用傳統數字精確描述的復雜系統問題。
神經網絡與灰色系統的結合方式有:(1)神經網絡與灰色系統簡單結合;(2)串聯型結合;(3)用神經網絡增強灰色系統;(4)用灰色網絡輔助構造神經網絡;(5)神經網絡與灰色系統的完全融合。
(3)神經網絡與專家系統的結合。基于神經網絡與專家系統的混合系統的基本出發點立足于將復雜系統分解成各種功能子系統模塊,各功能子系統模塊分別由神經網絡或專家系統實現。其研究的主要問題包括:混合專家系統的結構框架和選擇實現功能子系統方式的準則兩方面。由于該混合系統從根本上拋開了神經網絡和專家系統的技術限制,是當前研究的熱點。把粗集神經網絡專家系統用于醫學診斷,表明其相對于傳統方法的優越性。
(4)神經網絡與模糊邏輯的結合
模糊邏輯是一種處理不確定性、非線性問題的有力工具。它比較適合于表達那些模糊或定性的知識,其推理方式比較類似于人的思維方式,這都是模糊邏輯的優點。但它缺乏有效的自學習和自適應能力。
而將模糊邏輯與神經網絡結合,則網絡中的各個結點及所有參數均有明顯的物理意義,因此這些參數的初值可以根據系統的模糊或定性的知識來加以確定,然后利用學習算法可以很快收斂到要求的輸入輸出關系,這是模糊神經網絡比單純的神經網絡的優點所在。同時,由于它具有神經網絡的結構,因而參數的學習和調整比較容易,這是它比單純的模糊邏輯系統的優點所在。模糊神經網絡控制已成為一種趨勢,它能夠提供更加有效的智能行為、學習能力、自適應特點、并行機制和高度靈活性,使其能夠更成功地處理各種不確定的、復雜的、不精確的和近似的控制問題。
模糊神經控制的未來研究應集中于以下幾個方面:
(1)研究模糊邏輯與神經網絡的對應關系,將對模糊
控制器的調整轉化為等價的神經網絡的學習過程,用等價的模糊邏輯來初始化神經網絡;
(2)完善模糊神經控制的學習算法,以提高控制算法的速度與性能,可引入遺傳算法、BC算法中的模擬退火算法等,以提高控制性能;
(3)模糊控制規則的在線優化,可提高控制器的實時性與動態性能;(4)需深入研究系統的穩定性、能控性、能觀性以及平衡吸引子、混沌現象等非線性動力學特性。
關于神經網絡與模糊邏輯相結合的研究已有很多,比如,用于氬弧焊、機器人控制等。
(5)神經網絡與小波分析的結合
小波變換是對Fourier分析方法的突破。它不但在時域和頻域同時具有良好的局部化性質,而且對低頻信號在頻域和對高頻信號在時域里都有很好的分辨率,從而可以聚集到對象的任意細節。
利用小波變換的思想初始化小波網絡,并對學習參數加以有效約束,采用通常的隨機梯度法分別對一維分段函數、二維分段函數和實際系統中汽輪機壓縮機的數據做了仿真試驗,并與神經網絡、小波分解的建模做了比較,說明了小波網絡在非線性系統黑箱建模中的優越性。小波神經網絡用于機器人的控制,表明其具有更快的收斂速度和更好的非線性逼近能力。
四、結論
經過半個多世紀的發展,神經網絡理論在模式識別、自動控制、信號處理、輔助決策、人工智能等眾多研究領域取得了廣泛的成功,但其理論分析方法和設計方法還有待于進一步發展。相信隨著神經網絡的進一步發展,其將在工程應用中發揮越來越大的作用。
參考文獻:
[1]張曾科.模糊數學在自動化技術中的應用[M].清華大學出版社,1997.
[2]李士勇.模糊控制·神經控制和智能控制論[M].哈爾濱工業大學出版,1996.250-387.
[3]謝聯峻.模糊控制在列車自動駕駛中的應用[J].自動化與儀器儀表,1999,(4).
[4]CollierWC,Weiland,RJSmartCarts,SmartHighways[J].IEEESpec-trum,1994,31(4):27-33.
[5]HatwalH,MikulcikEC.someInverseSolutionstoanAutomobilePathTrackingProblemwithInputControlofSteeringandBreaks,Ve-hiclesystemDynamics,1986,(15):61-71.
[6]KosugeK,FukudaT,AsadaH.AcquisitionifHumanSkillsforRoboticSystem[C].In:ProcIEEEIntSympOnIntelligenControl,1991.469-489.
[7]王小平,曹立明.遺傳算法—理論、應用與軟件實現.西安交通大學出版社,2002.
[8]ManiezzoV.Geneticevolutionofthetopologhandweightdistribution
ofneuralnetwork[J].IEEETransonNeuralNetwork,1994,5(1)35-67.
[9]HarraldPG,KamstraM.Evolvingartificialneuralnetworkstocombinefinancialforecase[J].IEEETransonEvolComputer,1997,1(1):39-54.
[10]鄧聚龍.灰色系統理論教程.華中理工大學出版社,1990.
[11]呂宏輝,鐘珞,夏紅霞.灰色系統與神經網絡融合技術探索.微機發展,2000,23(4):67-109.
[12]ZhongL,YuanJL,ZouCM.Parameterwhitenmethodforneuralnetworkmodelingforgrayproblem.SPIE,Vol.4739,Orlando,2002.
[13]鐘珞,饒文碧,鄒承明.人工神經網絡及其融合應用技術.科學出版社,2007,(1):1-35.