前言:本站為你精心整理了概率論與數理統計教學淺談范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
【摘要】概率論與數理統計是一門實際生活和工程應用中都有重要意義的課程。在概率論與數理統計的課堂教學中,如何引起學生的學習興趣,讓學生深入了解本門課程的實際意義是決定學生學習效果的關鍵因素。本文結合實際課堂教學中的經驗,以幾個實際案例為例子,提出了幾點建議。
【關鍵詞】概率論與數理統計;啟發式教學;案例教學
國內多數高校工科本科生都開設了概率論與數理統計這門課程[1-2]。該課程無論是在經濟、管理、力學、軍事科學等眾多學科和實際生活中都有廣泛的應用,而且是控制、計算機等一些專業課的基礎課。但是作為一門數學專業課,學習有一定難度,如果不注意教學中的方式方法,容易讓學生感到枯燥難懂,失去學習興趣,影響教學效果。因此,當對工科學生講授這門課程時,應盡可能豐富教學方式,讓學生多了解這門課的實際意義,并更多地親身參與到教學當中。本文就此問題,結合筆者的教學經驗做幾點探討。
1啟發式教學
概率論與數理統計課程中有較多的公式推導,如果單純采用板書或ppt推導的方式進行授課,學生很容易會感到枯燥乏味,教學效果不好。因此比較好的方式是逐步啟發學生思考問題,讓學生跟隨老師的思路一步一步進行思考,由此體驗在老師的幫助下自己解決問題的成就感。以幾何概型部分的布豐投針問題為例。公元1777年的一天,法國科學家布豐邀請很多朋友一起做了一個實驗:紙上預先畫好了一條條等距離的平行線。接著他又抓出一大把原先準備好的小針,這些小針的長度都是平行線間距離的一半。把這些小針一根一根往紙上扔,記錄了所有人的投針結果,共投針2212次,其中與平行線相交的有704次??倲?212與相交數704的比值為3.142,即π的近似值。這是古典概型的經典應用。在課堂上,在古典概型部分的最后講解這個例子,讓學生把所學知識應用到實際當中,體驗數百年前科學家的思想。首先讓學生考慮將這個實驗抽象成數學問題,大致可以總結成為:設平面上畫著一些有相等距離2a(a>0)的平行線,向此平面上投一枚質地勻稱的長為2(ll<a)的針,求針與直線相交的概率。而這是一個典型的幾何概型問題。根據在此之前所說解決幾何概型問題的關鍵方法,要找到幾個自變量,使得它能夠用來刻畫整個實驗過程。引導學生通過畫圖看清楚針與線相交與否在幾何關系上的差別,此時學生一般能夠逐漸想到除距離外,針與線的夾角也是重要的參數,因此,需要用距離和夾角兩個自變量來刻畫整個試驗。完成這一過程后,再讓學生利用這兩個自變量,分別給出試驗的幾何度量和事件(針與線相交)的幾何度量。這樣通過較簡單地積分計算即可得到本問題要求的概率,即π值。通過這一過程,讓學生逐步體會古典概型中較難解決的幾何概型問題的求解過程,避免教師一言堂,單純語言敘述和公式推導的枯燥乏味。
2在教學中增加互動
除了采用啟發式教學,讓學生在老師的提示下獨立思考外,在課堂中設置一些互動,讓學生親身參與其中也有利于讓學生更深刻體會教學內容。例如,曾在美國多次引起大范圍討論的“三門問題”[3]。該問題亦稱為蒙提霍爾問題,出自美國一個電視節目。有三個門,其中兩個門后面是羊,一個門后面是汽車,參賽者選中其中一個門后,主持人開啟剩余兩扇門中一個后面是羊的門,此時參賽者可以選擇換另一個門。主持人是知道每個門后面的情況的,那么參賽者選擇換門是否可以增加得到汽車的概率?答案是肯定的,如果參賽者不換門,得到汽車的概率是1/3,而換門后得到汽車的概率是2/3。大多數人直觀的感受是換門與不換門的結果不應該有區別的,即各有一半的概率。因此本問題是數學上直觀感受與理論分析明顯不相符的一個有代表性的問題。而且本問題可以從概率論的多個角度去分析,如可以采用窮舉法、古典概型的基本算法或條件概率等不同的角度驗證。因此有利于學生展開大范圍討論并結合概率論中的多種知識去思考,讓學生熟練運用以前學過的知識。而且,在討論結束后,本問題可以很容易地通過實驗來驗證??梢哉覍W生進行模擬實驗,比如選擇兩黑一紅三張撲克牌,抽到紅色牌算是中獎,模仿三門問題的抽獎過程,如此反復進行實驗30-50次并統計結果,即可明顯看出換牌與不換牌中獎概率的差別。在這方面類似的問題如“三張卡牌的騙局”等等不再贅述。如此讓學生從多方面參與到教學當中,有利于學生集中注意力,并可以調動學生學習的主觀能動性。
3采用案例教學方法
概率論和數理統計的知識在生活的各個角落都可以找到應用,讓學生了解這一點對引發學生的學習興趣有很大幫助,而且有利于幫助學生將課堂學習的知識真正應用于實際的生產生活中。因此采用案例教學方法,在教學中采用與實際生產生活緊密聯系的例子有助于提高教學效果。例如,著名的美國橄欖球運動員辛普森殺妻案的庭審中,就在很多處與概率論和數理統計的知識有重要關聯[4]。例如,在庭審最初階段,控方反復強調辛普森曾有家暴現象,因此有殺妻的動機。而辯方的律師引用數據顯示,有家暴的男性中,最終殺妻的比例不足1/2500。但是,如果仔細思考這個問題就會發現,辯方的論據與實際問題是不相符的。辯方所說的是丈夫有家暴前提下殺妻的概率,而實際的問題應該是:在丈夫有家暴且妻子死于謀殺的前提下,妻子是被丈夫所殺的概率。通過當時的數據統計顯示,有43位被家暴且被謀殺的女性,其中40人是被丈夫所殺,即丈夫有家暴且妻子死于謀殺的前提下,妻子是被丈夫所殺的概率高達93%!這就是一個標準的條件概率問題,盡管算法并不復雜,但是認清條件和事件是問題的關鍵。另外,盡管眾多證據顯示辛普森是兇手的可能性很大,但是由于本案仍有一些疑點顯示辛普森也存在被人陷害的可能,根據美國法律疑罪從無的思想,辛普森最終被判無罪釋放。這是本案最終受到大量爭議的關鍵之一。而這種疑罪從無的思想,與數理統計中假設檢驗中降低受偽錯誤的思想是類似的。既然在已有條件固定情況下,受偽錯誤(將無罪的人判為有罪)和去真錯誤(將有罪的人無罪釋放)不可以同時降低,那么如果為了保護人權想盡可能降低受偽錯誤,那么有較高的去真錯誤也就無法避免了,美國法律即是如此。假設檢驗的理論是比較難以理解的,因此在理論講解中引入類似的實際案例進行類比,有助于學生較快的理解。
4結語
綜上所述,概率論與數理統計課程在工程和生活中的實用性較強,對工科學生普遍開展本課程有重要意義。但是本門課在很多部分較難理解,有必要采取多種方法激發學生的學習熱情,并讓學生學習將這門實用性較強的課程真正與實際生活聯系起來,從而提高學習效果
參考文獻:
[1]盛驟,謝式千,潘承毅.概率論與數理統計[M].北京:高等教育出版社,2014.
[2]陳希孺.概率論與數理統計[M].合肥:中國科學技術大學出版社,2009.
[3]謝騰.三門問題的理論縱觀[J].福建論壇(人文社會科學版),2010(S1):222-223.
[4]史蒂夫•斯托加茨.魯冬旭,譯.x的奇幻之旅[M].北京:中信出版社,2014.
作者:劉雪峰 常冬梅 單位:中國民航大學航空工程學院 天津職業技術師范大學天津市高速切削與精密加工重點實驗室