前言:本站為你精心整理了案例教學概率論數理統計論文范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
在教學內容的選編中,所選內容應突出“厚基礎”“重應用”的應用型特色。綜合考慮學生的就業方向,側重論述概念、方法、原理的歷史背景和現實背景在金融等方面的應用,對于冗長難懂的理論證明可以用直觀易懂的現實背景來解釋。例如講解全概率公式時,學生雖可以比較容易地應用,但不容易理解公式的本質,所以并不覺得引入這些公式有什么必要性,大大降低了學生的學習興趣。但如果在課堂引入“敏感事件調查”這個例子,會對經管類的文科學生具有很強的吸引力,從而為學生提高市場調查和問卷設計能力提供有益借鑒。在介紹貝葉斯公式時,可以根據經管類專業,引入貝葉斯公式應用在風險投資中的例子。在介紹期望的概念時,從賭博游戲介紹概念來源的背景,再將期望用到實際生活中去,可以引入其在投資組合及風險管理等方面的應用。這樣能使學生真正理解概率論中許多理論是取之于生活而用之于生活,并能自覺將理論運用到生活中去。在介紹極大似然思想時,可以從學生和獵人一起打獵的案例進行引入。
2設計趣味案例,激發學生學習興趣2015年1月5日
隨著互聯網的迅猛發展、電腦的普及、各種游戲軟件的開發,很多大學生喜歡在網上玩游戲。教師可以抓住大學生愛玩游戲這一特點,況且概率論的起源就來源于賭博游戲,教師可以在講授知識時,由一個游戲出發,循循誘導學生從興趣中學到知識,再應用到生活中去。例如,在講解期望定義時,可以設計這樣的一個游戲案例:假設手中有兩枚硬幣,一枚是正常的硬幣,一枚是包裝好的雙面相同的硬幣(即要么都是正面,要么都是反面,在拋之后才可以拆開看屬于哪種)。現在讓學生拿著這兩枚硬幣共拋10次,一次只能拋一枚,拋到正面就可以獲利1元錢,反面沒有獲利,問學生選擇怎樣一種拋擲組合,才能使預期收益最大?教師留給學生思考的時間,然后隨機抽一位同學回答,并解釋其理由。大部分學生選擇先拋后面那枚硬幣,如果發現兩面都是正面,那么后面9次都拋這枚,如果是反面,那后面9次都拋前面那枚硬幣。這種拋擲組合確實是最優的,但總是說不清其中的道理來。這時教師可以向學生解釋,其實大家在潛意識中已經用到了期望,然后利用期望的定義為大家驗算不同拋擲組合的期望值來說明大家選的組合確實是最優的,這時學生豁然開朗,理解了期望的真正含義。游戲可以繼續,如果將若干個包裝好的非正常硬幣裝入一個盒子里,比如將5枚雙面都是反面的、1枚雙面都是正面的硬幣裝入盒子里,學生從中摸一個硬幣出來,再和原來那枚正常的硬幣一起共拋10次,也可以選擇不摸硬幣,直接用手中正常硬幣拋10次。這個時候,原來那種拋擲組合還是最優的嗎;如果再改變箱子中兩種硬幣的比例,比如9枚雙面是反的,1枚雙面都是正的,結果又是怎樣等等,這些問題可以留給學生課后思考,并作為案例分析測試題。按照上述設計教學案例,不僅讓學生輕松學到知識,激發學生學習的能動性,還可以提高學生自己動手解決實際問題的能力,培養學生的創新能力。
3精選實用型案例,引導學生學以致用
如在講解全概率公式時引入摸彩模型,中獎的概率是否與抽獎的先后順序有關。利用全概率公式可以證明與順序無關,大家機會是平等的。又如講解事件獨立性可以引入比賽局數制定的案例,如果你是強勢的一方,是采取三局兩勝制還是五局三勝制,這個例子也可以用大數定理來解釋,n越大,越能反映真實的水平。又如設計車門高度問題,公共汽車車門的高度是按成年男性與車門頂頭碰頭機會在0.01以下來設計的:設某地區成年男性身高(單位:cm)X~N(170,36),問車門高度應如何確定?這個用正態分布標準化查表可解決。合理配備維修工人問題:為了保證設備正常工作,需配備適量的維修工人(工人配備多了就浪費,配備少了又要影響生產),現有同類型設備300臺,各臺工作是相互獨立的,發生故障的概率都是0.01。在通常情況下一臺設備的故障可由一個人來處理(我們也只考慮這種情況),問至少需配備多少工人,才能保證設備發生故障不能及時維修的概率小于0.01?這樣的問題在企業和公司經常會出現,我們用泊松定理或中心極限定理就可以求出。學生參與到實際問題中去,解決了問題又學到了知識,從而有成就感,學習就有了主動性。
4運用多媒體及統計軟件進行經典案例分析
在概率統計教學中,實際題目信息及文字很多,需要利用統計軟件及現代化媒體技術。其一,采用多媒體教學手段進行輔助教學,可以使教師節省大量的文字板書,避免很多不必要的重復性勞動中,從而教師就可以將更多的精力和時間用于闡釋問題解決的思路,提高課堂效率和學生學習的實際效果,有效地進行課堂交流。其二,使用圖形動畫和模擬實驗作為輔助教學手段,可以讓學生更直觀地理解一些抽象的概念和公式。如采用多媒體教學手段介紹投幣試驗、高爾頓板釘實驗時,可以使用小動畫,在不占用過多課堂教學時間的同時,又能增添課堂的趣味性。而在分析與講解泊松定理時,利用軟件演示二項分布逼近泊松分布,既形象又生動。如果在課堂教學中使用Mathematica軟件演示大數定律和中心極限定理時,就可將復雜而抽象的定理轉化為學生對形象的直觀認識,以使教學效果顯著提高。在處理概率統計問題過程中,我們經常會面對大量的數據需要處理,可以利用Excel,SPSS,Matlab,SAS等軟件簡化計算過程,從而降低理論難度。不僅如此,在教師使用與演示軟件的過程中,學生了解到應用計算機軟件能夠將所學概率論與數理統計知識用于解決實際問題,從而強烈激發學生學習概率知識的興趣。
5結合實驗教學,培養學生應用技能
由于概率論與數理統計課程是一門應用科學,因而通過一定的實驗來培養學生的實驗動手與動腦能力顯得尤為重要,在教學中,應該設計一些與所學專業相關的案例進行試驗教學。如采用以下幾個實驗:統計全年級該課程考試成績,看是否符合正態分布,并標準化而后排出名次;調查某個城市居民每月生活費用的分布情況,給出一定置信水平的置信區間;利用蒙特卡羅模擬計算定積分,利用蒙特卡羅模擬方法求的值,利用蒙特卡羅模擬對資產組合進行模擬,使學生系統掌握蒙特卡羅模擬這種在金融界得到廣泛應用的主流方法;對保險精算中的案例進行回歸分析。通過開設概率統計實驗課,不僅可以使學生體味生活中的數學,更可以讓學生深刻理解數學的本質和原貌,培養學生的實際操作與應用能力,從而提高學生的數學素養,并為后續課程夯實數學基礎,讓概率統計方法真正成為經濟、金融和管理科學的有力工具。另外,在考試方式上,可以精選案例分析題,考查學生案例分析能力,完善考核制度。在考試命題方式上,打破傳統的客觀題一統天下的格局,引入一定比例的案例分析題;總評成績中,增加課后案例分析思考題或測試成績的權重,考察學生綜合能力。
作者:劉娟單位:廣東金融學院應用數學系