前言:本站為你精心整理了麻醉藥物基因組學范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
本文對藥物基因組學的基本概念和常用麻醉藥的藥物基因組學研究進展進行綜述。
藥物基因組學是伴隨人類基因組學研究的迅猛發展而開辟的藥物遺傳學研究的新領域,主要闡明藥物代謝、藥物轉運和藥物靶分子的基因多態性及藥物作用包括療效和毒副作用之間關系的學科。
基因多態性是藥物基因組學的研究基礎。藥物效應基因所編碼的酶、受體、離子通道作為藥物作用的靶,是藥物基因組學研究的關鍵所在。基因多態性可通過藥物代謝動力學和藥物效應動力學改變來影響麻醉藥物的作用。
基因多態性對藥代動力學的影響主要是通過相應編碼的藥物代謝酶及藥物轉運蛋白等的改變而影響藥物的吸收、分布、轉運、代謝和生物轉化等方面。與麻醉藥物代謝有關的酶有很多,其中對細胞色素-P450家族與丁酰膽堿酯酶的研究較多。基因多態性對藥效動力學的影響主要是受體蛋白編碼基因的多態性使個體對藥物敏感性發生差異。
苯二氮卓類藥與基因多態性:咪唑安定由CYP3A代謝,不同個體對咪唑安定的清除率可有五倍的差異。地西泮是由CYP2C19和CYP2D6代謝,基因的差異在臨床上可表現為用藥后鎮靜時間的延長。
吸入麻醉藥與基因多態性:RYR1基因變異與MH密切相關,現在已知至少有23種不同的RYR1基因多態性與MH有關。氟烷性肝炎可能源于機體對在CYP2E1作用下產生的氟烷代謝產物的一種免疫反應。
神經肌肉阻滯藥與基因多態性:丁酰膽堿酯酶是水解琥珀酰膽堿和美維庫銨的酶,已發現該酶超過40種的基因多態性,其中最常見的是被稱為非典型的(A)變異體,與用藥后長時間窒息有關。
鎮痛藥物與基因多態性:μ-阿片受體是阿片類藥的主要作用部位,常見的基因多態性是A118G和G2172T。可待因和曲馬多通過CYP2D6代謝。此外,美沙酮的代謝還受CYP3A4的作用。兒茶酚O-甲基轉移酶(COMT)基因與痛覺的產生有關。
局部麻醉藥與基因多態性:羅哌卡因主要由CYP1A2和CYP3A4代謝。CYP1A2的基因多態性主要是C734T和G2964A,可能影響藥物代謝速度。
一直以來麻醉科醫生較其它專業的醫療人員更能意識到不同個體對藥物的反應存在差異。麻醉藥的藥物基因組學研究將不僅更加合理的解釋藥效與不良反應的個體差異,更重要的是在用藥前就可以根據病人的遺傳特征選擇最有效而副作用最小的藥物種類和劑型,達到真正的個體化用藥。
能夠準確預測病人對麻醉及鎮痛藥物的反應,一直是廣大麻醉科醫生追求的目標之一。若能了解藥物基因組學的基本原理,掌握用藥的個體化原則,就有可能根據病人的不同基因組學特性合理用藥,達到提高藥效,降低毒性,防止不良反應的目的。本文對藥物基因組學的基本概念和常用麻醉藥的藥物基因組學研究進展進行綜述。
一、概述
二十世紀60年代對臨床麻醉過程中應用琥珀酰膽堿后長時間窒息、硫噴妥鈉誘發卟啉癥及惡性高熱等的研究促進了藥物遺傳學(Pharmacogenetics)的形成和發展,可以說這門學科最早的研究就是從麻醉學開始的。
藥物基因組學(Phamacogenomics)是伴隨人類基因組學研究的迅猛發展而開辟的藥物遺傳學研究的新領域,主要闡明藥物代謝、藥物轉運和藥物靶分子的基因多態性及藥物作用包括療效和毒副作用之間的關系。它是以提高藥物的療效及安全性為目標,研究影響藥物吸收、轉運、代謝、消除等個體差異的基因特性,以及基因變異所致的不同病人對藥物的不同反應,并由此開發新的藥物和用藥方法的科學。
1959年Vogel提出了“藥物遺傳學”,1997年Marshall提出“藥物基因組學”。藥物基因組學是藥物遺傳學的延伸和發展,兩者的研究方法和范疇有頗多相似之處,都是研究基因的遺傳變異與藥物反應關系的學科。但藥物遺傳學主要集中于研究單基因變異,特別是藥物代謝酶基因變異對藥物作用的影響;而藥物基因組學除覆蓋藥物遺傳學研究范疇外,還包括與藥物反應有關的所有遺傳學標志,藥物代謝靶受體或疾病發生鏈上諸多環節,所以研究領域更為廣泛[1,2,3]。
二、基本概念
1.分子生物學基本概念
基因是一個遺傳密碼單位,由位于一條染色體(即一條長DNA分子和與其相關的蛋白)上特定位置的一段DNA序列組成。等位基因是位于染色體單一基因座位上的、兩種或兩種以上不同形式基因中的一種。人類基因或等位基因變異最常見的類型是單核苷酸多態性(single-nucleotidepolymorphism,SNP)。目前為止,已經鑒定出13000000多種SNPs。突變和多態性常可互換使用,但一般來說,突變是指低于1%的群體發生的變異,而多態性是高于1%的群體發生的變異。
2.基因多態性的命名法:
(1)數字前面的字母代表該基因座上最常見的核苷酸(即野生型),而數字后的字母則代表突變的核苷酸。例如:μ阿片受體基因A118G指的是在118堿基對上的腺嘌呤核苷酸(A)被鳥嘌呤核苷酸(G)取代,也可寫成118A/G或118A>G。
(2)對于單個基因密碼子導致氨基酸轉換的多態性編碼也可以用相互轉換的氨基酸的來標記。例如:丁酰膽堿酯酶基因多態性Asp70Gly是指此蛋白質中第70個氨基酸-甘氨酸被天冬氨酸取代。
三、藥物基因組學的研究內容
基因多態性是藥物基因組學的研究基礎。藥物效應基因所編碼的酶、受體、離子通道及基因本身作為藥物作用的靶,是藥物基因組學研究的關鍵所在。這些基因編碼蛋白大致可分為三大類:藥物代謝酶、藥物作用靶點、藥物轉運蛋白等。其中研究最為深入的是麻醉藥物與藥物代謝酶CYP45O酶系基因多態性的相關性[1,2,3]。
基因多態性可通過藥物代謝動力學和藥物效應動力學改變來影響藥物作用,對于臨床較常用的、治療劑量范圍較窄的、替代藥物較少的麻醉藥物尤其需引起臨床重視。
(一)基因多態性對藥物代謝動力學的影響
基因多態性對藥物代謝動力學
的影響主要是通過相應編碼的藥物代謝酶及藥物轉運蛋白等的改變而影響藥物的吸收、分布、轉運、代謝和生物轉化等方面[3,4,5,6]。
1、藥物代謝酶
與麻醉藥物代謝有關的酶有很多,其中對細胞色素-P450家族與丁酰膽堿酯酶的研究較多。
(1)細胞色素P-450(CYP45O)
麻醉藥物絕大部分在肝臟進行生物轉化,參與反應的主要酶類是由一個龐大基因家族編碼控制的細胞色素P450的氧化酶系統,其主要成分是細胞色素P-450(CYP45O)。CYP45O組成復雜,受基因多態性影響,稱為CYP45O基因超家族。1993年Nelson等制定出能反應CYP45O基因超家族內的進化關系的統一命名法:凡CYP45O基因表達的P450酶系的氨基酸同源性大于40%的視為同一家族(Family),以CYP后標阿拉伯數字表示,如CYP2;氨基酸同源性大于55%為同一亞族(Subfamily),在家族表達后面加一大寫字母,如CYP2D;每一亞族中的單個變化則在表達式后加上一個阿拉伯數字,如CYP2D6。
(2)丁酰膽堿酯酶
麻醉過程中常用短效肌松劑美維庫銨和琥珀酰膽堿,其作用時限依賴于水解速度。血漿中丁酰膽堿酯酶(假性膽堿酯酶)是水解這兩種藥物的酶,它的基因變異會使肌肉麻痹持續時間在個體間出現顯著差異。
2、藥物轉運蛋白的多態性
轉運蛋白控制藥物的攝取、分布和排除。P-糖蛋白參與很多藥物的能量依賴性跨膜轉運,包括一些止吐藥、鎮痛藥和抗心律失常藥等。P-糖蛋白由多藥耐藥基因(MDR1)編碼。不同個體間P-糖蛋白的表達差別明顯,MDR1基因的數種SNPs已經被證實,但其對臨床麻醉的意義還不清楚。
(二)基因多態性對藥物效應動力學的影響
麻醉藥物的受體(藥物靶點)蛋白編碼基因的多態性有可能引起個體對許多藥物敏感性的差異,產生不同的藥物效應和毒性反應[7,8]。
1、藍尼定受體-1(Ryanodinereceptor-1,RYR1)
藍尼定受體-1是一種骨骼肌的鈣離子通道蛋白,參與骨骼肌的收縮過程。惡性高熱(malignanthyperthermia,MH)是一種具有家族遺傳性的、由于RYR1基因異常而導致RYR1存在缺陷的亞臨床肌肉病,在揮發性吸入麻醉藥和琥珀酰膽堿的觸發下可以出現骨骼肌異常高代謝狀態,以至導致患者死亡。
2、阿片受體
μ-阿片受體由OPRM1基因編碼,是臨床使用的大部分阿片類藥物的主要作用位點。OPRM1基因的多態性在啟動子、內含子和編碼區均有發生,可引起受體蛋白的改變。嗎啡和其它阿片類藥物與μ-受體結合而產生鎮痛、鎮靜及呼吸抑制。不同個體之間μ-阿片受體基因的表達水平有差異,對疼痛刺激的反應也有差異,對阿片藥物的反應也不同。
3、GABAA和NMDA受體
γ-氨基丁酸A型(GABAA)受體是遞質門控離子通道,能夠調節多種麻醉藥物的效應。GABAA受體的亞單位(α、β、γ、δ、ε和θ)的編碼基因存在多態性(尤其α和β),可能與孤獨癥、酒精依賴、癲癇及精神分裂癥有關,但尚未見與麻醉藥物敏感性有關的報道。N-甲基-D-天門冬氨酸(NMDA)受體的多態性也有報道,但尚未發現與之相關的疾病。
(三)基因多態性對其它調節因子的影響
有些蛋白既不是藥物作用的直接靶點,也不影響藥代和藥效動力學,但其編碼基因的多態性在某些特定情況下會改變個體對藥物的反應。例如,載脂蛋白E基因的遺傳多態性可以影響羥甲基戊二酸單酰輔酶A(HMG-CoA)還原酶抑制劑(他汀類藥物)的治療反應。鮮紅色頭發的出現幾乎都是黑皮質素-1受體(MC1R)基因突變的結果。MC1R基因敲除的老鼠對麻醉藥的需求量增加。先天紅發婦女對地氟醚的需要量增加,熱痛敏上升而局麻效力減弱。
四、苯二氮卓類藥與基因多態性
大多數苯二氮卓類藥經肝臟CYP45O代謝形成極性代謝物,由膽汁或尿液排出。常用的苯二氮卓類藥物咪唑安定就是由CYP3A代謝,其代謝產物主要是1-羥基咪唑安定,其次是4-羥基咪唑安定。在體實驗顯示不同個體咪唑安定的清除率可有五倍的差異。
地西泮是另一種常用的苯二氮卓類鎮靜藥,由CYP2C19和CYP2D6代謝。細胞色素CYP2C19的G681A多態性中A等位基因純合子個體與正常等位基因G純合子個體相比,地西泮的半衰期延長4倍,可能是CYP2C19的代謝活性明顯降低的原因。A等位基因雜合子個體對地西泮代謝的半衰期介于兩者之間。這些基因的差異在臨床上表現為地西泮用藥后鎮靜或意識消失的時間延長[9,10]。
五、吸入麻醉藥與基因多態性
到目前為止,吸入麻醉藥的藥物基因組學研究主要集中于尋找引起藥物副反應的遺傳方面的原因,其中研究最多的是MH。藥物基因組學研究發現RYR1基因變異與MH密切相關,現在已知至少有23種不同的RYR1基因多態性與MH有關。
與MH不同,氟烷性肝炎可能源于機體對在CYP2E1作用下產生的氟烷代謝產物的一種免疫反應,但其發生機制還不十分清楚[7,11]。
六、神經肌肉阻滯藥與基因多態性
神經肌肉阻滯藥如琥珀酰膽堿和美維庫銨的作用與遺傳因素密切相關。血漿中丁酰膽堿酯酶(假性膽堿酯酶)是一種水解這兩種藥物的酶,已發現該酶超過40種的基因多態性,其中最常見的是被稱為非典型的(A)變異體,其第70位發生點突變而導致一個氨基酸的改變,與應用肌松劑后長時間窒息有關。如果丁酰膽堿酯酶Asp70Gly多態性雜合子(單個等位基因)表達,會導致膽堿酯酶活性降低,藥物作用時間通常會延長3~8倍;而丁酰膽堿酯酶Asp70Gly多態性的純合子(2個等位基因)表達則更加延長其恢復時間,比正常人增加60倍。法國的一項研究表明,應用多聚酶鏈反應(PCR)方法,16例發生過窒息延長的病人中13例被檢測為A變異體陽性。預先了解丁酰膽堿酯酶基因型的改變,避免這些藥物的應用可以縮短術后恢復時間和降低醫療費用[6,12]。
七、鎮痛藥物與基因多態性
μ-阿片受體是臨床應用的阿片類藥的主要作用部位。5%~10%的高加索人存在兩種常見μ-阿片受體基因變異,即A118G和G2172T。A118G變異型使阿片藥物的鎮痛效力減弱。另一種阿片相關效應—瞳孔縮小,在118G攜帶者明顯減弱。多態性還可影響阿片類藥物
代謝。
阿片類藥物的重要的代謝酶是CYP2D6。可待因通過CYP2D6轉化為它的活性代謝產物-嗎啡,從而發揮鎮痛作用。對33名曾使用過曲馬多的死者進行尸檢發現,CYP2D6等位基因表達的數量與曲馬多和O-和N-去甲基曲馬多的血漿濃度比值密切相關,說明其代謝速度受CYP2D6多態性的影響。除CYP2D6外,美沙酮的代謝還受CYP3A4的作用。已證實CYP3A4在其它阿片類藥如芬太尼、阿芬太尼和蘇芬太尼的代謝方面也發揮重要作用。
有報道顯示兒茶酚O-甲基轉移酶(COMT)基因與痛覺的產生有關。COMT是兒茶酚胺代謝的重要介質,也是痛覺傳導通路上腎上腺素能和多巴胺能神經的調控因子。研究證實Val158MetCOMT基因多態性可以使該酶的活性下降3~4倍。Zubieta等報道,G1947A多態性個體對實驗性疼痛的耐受性較差,μ-阿片受體密度增加,內源性腦啡肽水平降低[13~16]。
八、局部麻醉藥與基因多態性
羅哌卡因是一種新型的酰胺類局麻藥,有特有的S-(-)-S對應體,主要經肝臟代謝消除。羅哌卡因代謝產物3-OH-羅哌卡因由CYP1A2代謝生成,而4-OH-羅哌卡因、2-OH-羅哌卡因和2-6-pipecoloxylidide(PPX)則主要由CYP3A4代謝生成。CYP1A2的基因多態性主要是C734T和G2964A。Mendoza等對159例墨西哥人的DNA進行檢測,發現CYP1A2基因的突變率為43%。Murayama等發現日本人中CYP1A2基因存在6種導致氨基酸替換的SNPs。這些發現可能對藥物代謝動力學的研究、個體化用藥具有重要意義[17,18,19]。
九、總結與展望
一直以來麻醉科醫生較其它專業的醫療人員更能意識到不同個體對藥物的反應存在差異。麻醉藥的藥物基因組學研究將不僅更加合理的解釋藥效與不良反應的個體差異,更重要的是在用藥前就可以根據病人的遺傳特征選擇最有效而副作用最小的藥物種類和劑型,達到真正的個體化用藥。
雖然將基因組學引入麻醉藥的應用研究,即從基因水平研究基因多態性與麻醉藥的藥效的關系已成為一種趨勢。但是麻醉藥效果的個體差異,不僅受基因多態性的影響,還受環境、種族和地區等多種因素的影響。所以還需要前瞻性、大樣本、多種族、多中心的研究。不過可以設想,醫學發展在將來進入“個體化醫學”時代,每人都擁有一張“基因身份證”,并可依據其特點優化麻醉藥物的給藥方案,真正做到個體化給藥,由“對癥給藥”發展到“對人給藥”,取得高效、安全、經濟的最佳治療效果。