前言:本站為你精心整理了初中數學教案用公式解一元二次方程5范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
一、素質教育目標
(一)知識教學點:
2.能用公式解關于字母系數的一元二次方程.
(二)能力訓練點:培養學生快速準確的計算能力.
(三)德育滲透點:
1.向學生滲透由一般到特殊,再由特殊到一般的認識問題和解決問題的方法.
2.滲透分類的思想.
二、教學重點、難點、疑點及解決方法
1.教學重點:用公式法解一元二次方程.
2.教學難點:在解關于字母系數的一元二次方程中注意判斷b2-4ac的正負.
3.教學疑點:對于首項系數含有字母的方程的解要注意分類討論.
三、教學步驟
(一)明確目標
公式法是解一元二次方程的通法,利用公式法不僅可以求得方程中x的準確值,也可以求得近似值,不僅可以解關于數字系數的一元二次方程,還可以求解關于字母系數的一元二次方程.
(二)整體感知
這節內容是上節內容的繼續,繼續利用一元二次方程的求根公式求一元二次方程的解.但在原來的基礎上有所深化,會進行近似值的計算,對字母系數的一元二次方程如何用公式法求解.由此向學生滲透由一般到特殊,再由特殊到一般的認識問題和解決問題的方法,通過字母系數一元二次方程的求解,滲透分類的思想,為方程根的存在情況的討論等打下堅實的基礎.
(三)重點,難點的學習與目標完成過程
1.復習提問
(1)寫出一元二次方程的一般形式及求根公式.
一般式:ax2+bx+c=0(a≠0).
(2)說出下列方程中的a、b、c的值.
①x2-6=9x;
②3x2+4x=7;
③x2=10x-24;
通過以上練習,為本節課順利完成任務奠定基礎.
2.例1解方程x2+x-1=0(精確到0.01).
解:∵a=1,b=1,c=-1,
對于近似值的求法,一是注意要求,要求中有精確0.01,有保留三位有效數字,有精確到小數點第三位.二是在運算過程中精確的位數要比要求的多一位.三是注意有近似值要求就按要求求近似值,無近似值要求求準確值.練習:用公式法解方程x2+3x-5=0(精確到0.01)
學生板演、評價、練習.深刻體會求近擬值的方法和步驟.例2解關于x的方程x2-m(3x-2m+n)-n2=0.
分析:解關于字母系數的方程時,一定要把字母看成已知數.解:展開,整理,得
x2-3mx+2m2-nm-n2=0.
∵a=1,b=-3m,c=2m2-mn-n2,
又∵b2-4ac=(-3m)2-4×1×(2m2-mn-n2),
=(m+2n)2≥0
∴x1=2m+n,x2=m-n.
分析過程,b2-4ac=(m+2n)2≥0,此式中的m,n取任何實
詳細變化過程是:
練習:1.解關于x的方程2x2-mx-n2=0.
解:∵a=2,b=-m,c=-n2
∵b2-4ac=(-m)2-4×2(-n2)
=m2+8n2≥0,
學生板書、練習、評價,體會過程及步驟的安排.
練習:2.解:于x的方程abx2-(a4+b4)x+a3b3=0(ab≠0).
解:∵A=ab,B=-a4-b4,C=a3b3
∴B2-4AC=(-a4-b4)2-4ab•a3b3
=(a4+b4)2-4a4b4
=(a4-b4)2≥0
學生練習、板書、評價,注意(a4+b4)2-4a4b4=(a4-b4)2的變化過程.注意ab≠0的條件.
練習3解關于x的方程(m+n)x2+(4m-2n)x+n-5m=0.
分析:此方程的字母沒有任何限制,則m,n為任何實數.所以此方程不一定是一元二次方程,因此需分m+n=0和m+n≠0兩種情況進行討論.
解:(1)當m+n=0且m≠0,n≠0時,原方程可變為
(4m+2m)x-m-5m=0.
∵m≠0解得x=1,
(2)當m+n≠0時,
∵a=m+n,b=4m-2n,c=n-5m,
∴b2-4ac=(4m-2n)2-4(m+n)(n-5m)=36m2≥0.
通過此題,在加強練習公式法的基礎上,滲透分類的思想.
(四)總結、擴展
1.用公式法解一元二次方程,要先確定a、b、c的值,再確定b2-4ac的符號.
2.求近似值時,要注意精確到多少位?計算過程中要比運算結果精確的位數多1位.
3.如果含有字母系數的一元二次方程,首先要注意首項系數為不為零,其次如何確定b2-4ac的符號.
四、布置作業
教材P.14練習2.
教材P.15中A:5、6、7、8。
五、板書設計
12.1一元二次方程的解法(五)
一元二次方程的一般形式及求根公式例1.……例2.……
ax2+bx+c=0(a≠0)…………
練習.……
六、作業參考答案
教材P.14
教材P.15A:5(1)x1≈4.54,x2≈-1.54
(2)x1≈3.70x2≈0.54
6、(1)x1=3,x2=-3;
(2)x1=7,x2=3;
(4)x1=-29,x2=21;
教材P.17B4
解:由題得3x2+6x-8=2x2-1
整理得x2+6x-7=0
又∵a=1,b=6,c=-7
∴當x=1或x=-7時,3x2+6x-8的值和2x2-1的值相等