前言:想要寫(xiě)出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇光通信研究論文范文,相信會(huì)為您的寫(xiě)作帶來(lái)幫助,發(fā)現(xiàn)更多的寫(xiě)作思路和靈感。
筆者認(rèn)為,光纖通信技術(shù)尚有很大的發(fā)展空間,今后會(huì)有很大的需求和市場(chǎng)。主要是:光纖到家庭FTTH、光交換和集成光電子器件方面會(huì)有較大的發(fā)展。在此主要討論光纖通信的發(fā)展趨勢(shì)和市場(chǎng)。
光纖通信的發(fā)展趨勢(shì)
1、光纖到家庭(FTTH)的發(fā)展
FTTH可向用戶提供極豐富的帶寬,所以一直被認(rèn)為是理想的接入方式,對(duì)于實(shí)現(xiàn)信息社會(huì)有重要作用,還需要大規(guī)模推廣和建設(shè)。FTTH所需要的光纖可能是現(xiàn)有已敷光纖的2~3倍。過(guò)去由于FTTH成本高,缺少寬帶視頻業(yè)務(wù)和寬帶內(nèi)容等原因,使FTTH還未能提到日程上來(lái),只有少量的試驗(yàn)。近來(lái),由于光電子器件的進(jìn)步,光收發(fā)模塊和光纖的價(jià)格大大降低;加上寬帶內(nèi)容有所緩解,都加速了FTTH的實(shí)用化進(jìn)程。
發(fā)達(dá)國(guó)家對(duì)FTTH的看法不完全相同:美國(guó)AT&T認(rèn)為FTTH市場(chǎng)較小,在0F62003宣稱(chēng):FTTH在20-50年后才有市場(chǎng)。美國(guó)運(yùn)行商Verizon和Sprint比較積極,要在10—12年內(nèi)采用FTTH改造網(wǎng)絡(luò)。日本NTT發(fā)展FTTH最早,現(xiàn)在已經(jīng)有近200萬(wàn)用戶。目前中國(guó)FTTH處于試點(diǎn)階段。
FTTH[遇到的挑戰(zhàn):現(xiàn)在廣泛采用的ADSL技術(shù)提供寬帶業(yè)務(wù)尚有一定優(yōu)勢(shì)。與FTTH相比:①價(jià)格便宜②利用原有銅線網(wǎng)使工程建設(shè)簡(jiǎn)單③對(duì)于目前1Mbps—500kbps影視節(jié)目的傳輸可滿足需求。FTTH目前大量推廣受制約。
對(duì)于不久的將來(lái)要發(fā)展的寬帶業(yè)務(wù),如:網(wǎng)上教育,網(wǎng)上辦公,會(huì)議電視,網(wǎng)上游戲,遠(yuǎn)程診療等雙向業(yè)務(wù)和HDTV高清數(shù)字電視,上下行傳輸不對(duì)稱(chēng)的業(yè)務(wù),AD8L就難以滿足。尤其是HDTV,經(jīng)過(guò)壓縮,目前其傳輸速率尚需19.2Mbps。正在用H.264技術(shù)開(kāi)發(fā),可壓縮到5~6Mbps。通常認(rèn)為對(duì)QOS有所保證的ADSL的最高傳輸速串是2Mbps,仍難以傳輸HDTV??梢哉J(rèn)為HDTV是FTTH的主要推動(dòng)力。即HDTV業(yè)務(wù)到來(lái)時(shí),非FTTH不可。
FTTH的解決方案:通常有P2P點(diǎn)對(duì)點(diǎn)和PON無(wú)源光網(wǎng)絡(luò)兩大類(lèi)。
F2P方案一一優(yōu)點(diǎn):各用戶獨(dú)立傳輸,互不影響,體制變動(dòng)靈活;可以采用廉價(jià)的低速光電子模塊;傳輸距離長(zhǎng)。缺點(diǎn):為了減少用戶直接到局的光纖和管道,需要在用戶區(qū)安置1個(gè)匯總用戶的有源節(jié)點(diǎn)。
PON方案——優(yōu)點(diǎn):無(wú)源網(wǎng)絡(luò)維護(hù)簡(jiǎn)單;原則上可以節(jié)省光電子器件和光纖。缺點(diǎn):需要采用昂貴的高速光電子模塊;需要采用區(qū)分用戶距離不同的電子模塊,以避免各用戶上行信號(hào)互相沖突;傳輸距離受PON分比而縮短;各用戶的下行帶寬互相占用,如果用戶帶寬得不到保證時(shí),不單是要網(wǎng)絡(luò)擴(kuò)容,還需要更換PON和更換用戶模塊來(lái)解決。(按照目前市場(chǎng)價(jià)格,PEP比PON經(jīng)濟(jì))。
PON有多種,一般有如下幾種:(1)APON:即ATM-PON,適合ATM交換網(wǎng)絡(luò)。(2)BPON:即寬帶的PON。(3)OPON:采用通用幀處理的OFP-PON。(4)EPON:采用以太網(wǎng)技術(shù)的PON,0EPON是千兆畢以太網(wǎng)的PON。(5)WDM-PON:采用波分復(fù)用來(lái)區(qū)分用戶的PON,由于用戶與波長(zhǎng)有關(guān),使維護(hù)不便,在FTTH中很少采用。
發(fā)達(dá)國(guó)家發(fā)展FTTH的計(jì)劃和技術(shù)方案,根據(jù)各國(guó)具體情況有所不同。美國(guó)主要采用A-PON,因?yàn)锳TM交換在美國(guó)應(yīng)用廣泛。日本NTT有一個(gè)B-FLETts計(jì)劃,采用P2P-MC、B-PON、G-EPON、SCM-PON等多種技術(shù)。SCM-PON:是采用副載波調(diào)制作為多信道復(fù)用的PON。
中國(guó)ATM使用遠(yuǎn)比STM的SDH少,一般不考慮APON。我們可以考慮的是P2P、GPON和EPON。P2P方案的優(yōu)缺點(diǎn)前面已經(jīng)說(shuō)過(guò),目前比較經(jīng)濟(jì),使用靈活,傳輸距離遠(yuǎn)等;宜采用。而比較GPON和EPON,各有利弊。GPON:采用GFP技術(shù)網(wǎng)絡(luò)效率高;可以有電話,適合SDH網(wǎng)絡(luò),與IP結(jié)合沒(méi)有EPON好,但目前GPON技術(shù)不很成熟。EPON:與IP結(jié)合好,可用戶電話,如用電話需要借助lAD技術(shù)。目前,中國(guó)的FTTH試點(diǎn)采用EPON比較多。FTTH技術(shù)方案的采用,還需要根據(jù)用戶的具體情況不同而不同。
近來(lái),無(wú)線接入技術(shù)發(fā)展迅速??捎米鱓LAN的IEEE802.11g協(xié)議,傳輸帶寬可達(dá)54Mbps,覆蓋范圍達(dá)100米以上,目前已可商用。如果采用無(wú)線接入WLAN作用戶的數(shù)據(jù)傳輸,包括:上下行數(shù)據(jù)和點(diǎn)播電視VOD的上行數(shù)據(jù),對(duì)于一般用戶其上行不大,IEEES02.11g是可以滿足的。而采用光纖的FTTH主要是解決HDTV寬帶視頻的下行傳輸,當(dāng)然在需要時(shí)也可包含一些下行數(shù)據(jù)。這就形成“光纖到家庭+無(wú)線接入”(FTTH+無(wú)線接入)的家庭網(wǎng)絡(luò)。這種家庭網(wǎng)絡(luò),如果采用PON,就特別簡(jiǎn)單,因?yàn)榇薖ON無(wú)上行信號(hào),就不需要測(cè)距的電子模塊,成本大大降低,維護(hù)簡(jiǎn)單。如果,所屬PON的用戶群體,被無(wú)線城域網(wǎng)WiMAX(1EEE802.16)覆蓋而可利用,那么可不必建設(shè)專(zhuān)用的WLAN。接入網(wǎng)采用無(wú)線是趨勢(shì),但無(wú)線接入網(wǎng)仍需要密布于用戶臨近的光纖網(wǎng)來(lái)支撐,與FTTH相差無(wú)幾。FTTH+無(wú)線接入是未來(lái)的發(fā)展趨勢(shì)。
2、光交換的發(fā)展什么是通信?
實(shí)際上可表示為:通信輸+交換。
光纖只是解決傳輸問(wèn)題,還需要解決光的交換問(wèn)題。過(guò)去,通信網(wǎng)都是由金屬線纜構(gòu)成的,傳輸?shù)氖请娮有盘?hào),交換是采用電子交換機(jī)。現(xiàn)在,通信網(wǎng)除了用戶末端一小段外,都是光纖,傳輸?shù)氖枪庑盘?hào)。合理的方法應(yīng)該采用光交換。但目前,由于目前光開(kāi)關(guān)器件不成熟,只能采用的是“光-電-光”方式來(lái)解決光網(wǎng)的交換,即把光信號(hào)變成電信號(hào),用電子交換后,再變還光信號(hào)。顯然是不合理的辦法,是效串不高和不經(jīng)濟(jì)的。正在開(kāi)發(fā)大容量的光開(kāi)關(guān),以實(shí)現(xiàn)光交換網(wǎng)絡(luò),特別是所謂ASON-自動(dòng)交換光網(wǎng)絡(luò)。
通常在光網(wǎng)里傳輸?shù)男畔?一般速度都是xGbps的,電子開(kāi)關(guān)不能勝任。一般要在低次群中實(shí)現(xiàn)電子交換。而光交換可實(shí)現(xiàn)高速XGbDs的交換。當(dāng)然,也不是說(shuō),一切都要用光交換,特別是低速,顆粒小的信號(hào)的交換,應(yīng)采用成熟的電子交換,沒(méi)有必要采用不成熟的
大容量的光交換。當(dāng)前,在數(shù)據(jù)網(wǎng)中,信號(hào)以“包”的形式出現(xiàn),采用所謂“包交換”。包的顆粒比較小,可采用電子交換。然而,在大量同方向的包匯總后,數(shù)量很大時(shí),就應(yīng)該采用容量大的光交換。目前,少通道大容量的光交換已有實(shí)用。如用于保護(hù)、下路和小量通路調(diào)度等。一般采用機(jī)械光開(kāi)關(guān)、熱光開(kāi)關(guān)來(lái)實(shí)現(xiàn)。目前,由于這些光開(kāi)關(guān)的體積、功耗和集成度的限制,通路數(shù)一般在8—16個(gè)。
電子交換一般有“空分”和“時(shí)分”方式。在光交換中有“空分”、“時(shí)分”和“波長(zhǎng)交換”。光纖通信很少采用光時(shí)分交換。
光空分交換:一般采用光開(kāi)關(guān)可以把光信號(hào)從某一光纖轉(zhuǎn)到另一光纖??辗值墓忾_(kāi)關(guān)有機(jī)械的、半導(dǎo)體的和熱光開(kāi)關(guān)等。近來(lái),采用集成技術(shù),開(kāi)發(fā)出MEM微電機(jī)光開(kāi)關(guān),其體積小到mm。已開(kāi)發(fā)出1296x1296MEM光交換機(jī)(Lucent),屬于試驗(yàn)性質(zhì)的。
光波長(zhǎng)交換:是對(duì)各交換對(duì)象賦于1個(gè)特定的波長(zhǎng)。于是,發(fā)送某1特定波長(zhǎng)就可對(duì)某特定對(duì)象通信。實(shí)現(xiàn)光波長(zhǎng)交換的關(guān)鍵是需要開(kāi)發(fā)實(shí)用化的可變波長(zhǎng)的光源,光濾波器和集成的低功耗的可靠的光開(kāi)關(guān)陣列等。已開(kāi)發(fā)出640x640半導(dǎo)體光開(kāi)關(guān)+AWG的空分與波長(zhǎng)的相結(jié)合的交叉連接試驗(yàn)系統(tǒng)(corning)。采用光空分和光波分可構(gòu)成非常靈活的光交換網(wǎng)。日本NTT在Chitose市進(jìn)行了采用波長(zhǎng)路由交換的現(xiàn)場(chǎng)試驗(yàn),半徑5公里,共有43個(gè)終端節(jié),(試用5個(gè)節(jié)點(diǎn)),速率為2.5Gbps。
自動(dòng)交換的光網(wǎng),稱(chēng)為ASON,是進(jìn)一步發(fā)展的方向。
3、集成光電子器件的發(fā)展
如同電子器件那樣,光電子器件也要走向集成化。雖然不是所有的光電子器件都要集成,但會(huì)有相當(dāng)?shù)囊徊糠质切枰沂强梢约傻?。目前正在發(fā)展的PLC-平面光波導(dǎo)線路,如同一塊印刷電路板,可以把光電子器件組裝于其上,也可以直接集成為一個(gè)光電子器件。要實(shí)現(xiàn)FTTH也好,ASON也好,都需要有新的、體積小的和廉價(jià)的和集成的光電子器件。
日本NTT采用PLO技術(shù)研制出16x16熱光開(kāi)關(guān);1x128熱光開(kāi)關(guān)陣列;用集成和混合集成工藝把32通路的AWG+可變光衰減器+光功率監(jiān)測(cè)集成在一起;8波長(zhǎng)每波速串為80Gbps的WDM的復(fù)用和去復(fù)用分別集成在1塊芯片上,尺寸僅15x7mm,如圖1。NTT采用以上集成器件構(gòu)成32通路的OADM。其中有些已經(jīng)商用。近幾年,集成光電子器件有比較大的改進(jìn)。
中國(guó)的集成光電子器件也有一定進(jìn)展。集成的小通道光開(kāi)關(guān)和屬于PLO技術(shù)的AWG有所突破。但與發(fā)達(dá)國(guó)家尚有較大差距。如果我們不迎頭趕上,就會(huì)重復(fù)如同微電子落后的被動(dòng)局面。
光纖通信的市場(chǎng)
眾所周知,2000年IT行業(yè)泡沫,使光纖通信產(chǎn)業(yè)生產(chǎn)規(guī)模爆炸性地發(fā)展,產(chǎn)品生產(chǎn)過(guò)剩。無(wú)論是光傳輸設(shè)備,光電子器件和光纖的價(jià)格都狂跌。特別是光纖,每公里泡沫時(shí)期價(jià)格為羊1200,現(xiàn)在價(jià)格Y100左右1公里,比銅線還便宜。光纖通信的市場(chǎng)何時(shí)能恢復(fù)?根據(jù)RHK的對(duì)北美通信產(chǎn)業(yè)投入的統(tǒng)計(jì)和預(yù)測(cè),如圖2.在2002年是最低谷,相當(dāng)于倒退4年?,F(xiàn)在有所回升,但還不能恢復(fù)。按此推測(cè),在2007-2008年才能復(fù)元。光纖通信的市場(chǎng)也隨IT市場(chǎng)好轉(zhuǎn)。這些好轉(zhuǎn),在相當(dāng)大的程度是由FTTH和寬帶數(shù)字電視所帶動(dòng)的。
論文摘要:介紹了一種在玻璃基板上切割V型槽并對(duì)V型槽纖芯距進(jìn)行高精度測(cè)量的光纖偏振光干涉儀,該系統(tǒng)包括光源、偏振器、偏振控制器、波片、自聚焦透鏡和探測(cè)器組成,并對(duì)這種光纖傳感器原理進(jìn)行分析。其理論上其測(cè)量精度可達(dá)到0.01nm,很好地解決了實(shí)際生產(chǎn)中高精度的非接觸在線檢測(cè),并滿足了光通信行業(yè)對(duì)V型槽纖芯距的實(shí)際要求。
引言
在光通信纖維陣列用玻璃基板上刻高精度V型槽(通用型槽間距即纖芯距為127±0.5um和250±0.5um)的關(guān)鍵技術(shù)被日韓等少數(shù)國(guó)家壟斷,國(guó)內(nèi)使用的光纖陣列用V型槽基板均需要依靠進(jìn)口,價(jià)格昂貴,嚴(yán)重制約了我國(guó)光纖到戶(FTTH)工程的進(jìn)程。而光通信纖維陣列用V型槽基板是光纖到戶工程中必不可少的光器件,主要用于對(duì)光纖精確定位生產(chǎn)各種銜接光纖干線與家用光纖之間的信號(hào)傳輸?shù)墓馄骷?/p>
日本在光通信纖維陣列用V型槽基板的加工設(shè)備開(kāi)發(fā)上起步較早,也具有較為成熟的技術(shù)方案。目前,日本等國(guó)家生產(chǎn)光通信纖維陣列用V型基板全部采用高精度的專(zhuān)用切割機(jī),而此類(lèi)設(shè)備日本等發(fā)達(dá)國(guó)家對(duì)我國(guó)實(shí)施禁運(yùn),國(guó)內(nèi)部分企業(yè)與機(jī)構(gòu)也曾嘗試對(duì)此方面進(jìn)行研究,皆因?yàn)榧夹g(shù)難度較高,而最終以失敗告終,因此在國(guó)內(nèi)尚屬于空白。
在先進(jìn)的生產(chǎn)制造過(guò)程中,非接觸的在線檢測(cè)發(fā)揮著越來(lái)越重要的作用。在線檢測(cè)的對(duì)象在被測(cè)過(guò)程中是不斷變化著的,因此對(duì)檢測(cè)傳感器不僅要求其精度高、穩(wěn)定可靠、有良好的動(dòng)態(tài)性能、能對(duì)快速信號(hào)實(shí)時(shí)響應(yīng)監(jiān)控,而且一般要非接觸式測(cè)量,并便于安裝。
本文提出一種新型的光纖偏振光干涉儀,它將偏振光干涉技術(shù)和光纖傳感技術(shù)相結(jié)合,能對(duì)玻璃基板V型槽的纖芯距進(jìn)行高精度的在線檢測(cè)的非接觸測(cè)量。
1、實(shí)驗(yàn)原理設(shè)計(jì)
即
該線偏振光 的偏振方向與x軸夾角為 。
(1)
被測(cè)物位移變化一個(gè)波長(zhǎng)則合成光的偏振方向轉(zhuǎn)動(dòng)了角。因此,通過(guò)檢測(cè)出偏振方向角,即可得到位移。所以,可將干涉儀的位移測(cè)量精度,由一般檢測(cè)干涉條紋的位相細(xì)分轉(zhuǎn)變?yōu)闄z測(cè)偏振光的偏振方向角的角度細(xì)分;而檢測(cè)角度細(xì)分要比檢測(cè)位相細(xì)分精度高,從而可得到較高的測(cè)量精度。
由式(1) 可得位移的變化量。如,當(dāng)角度檢測(cè)精度時(shí),則可測(cè)得位移精度;而當(dāng) 時(shí),則 ,因此光纖偏振光干涉儀可以具有很高的靈敏度和精度。
2、 測(cè)量實(shí)例及結(jié)果
轉(zhuǎn)貼于
本項(xiàng)目結(jié)合光學(xué)精密測(cè)量技術(shù)實(shí)現(xiàn)通用切割機(jī)主軸的精確定位,通過(guò)設(shè)計(jì)穩(wěn)定的工作平臺(tái),選用硬度合適的刀具,選擇最佳的切削參數(shù),完成V形槽的亞微米超精密機(jī)械加工,盡可能減少由于機(jī)械方面引起的切割誤差。
實(shí)際切割原理如圖2所示,在實(shí)際中,算機(jī)通過(guò)控制偏振角度 的值來(lái)控制刀移動(dòng)的位置來(lái)實(shí)行對(duì)玻璃基板上對(duì)V槽纖芯距的切割。實(shí)際切割的產(chǎn)品如圖3所示。該圖是8通道纖芯距為250um的V型槽的放大圖。
如圖4是計(jì)算機(jī)顯示屏顯示的控制情況。從圖可以看出,該系統(tǒng)可以很好地監(jiān)控實(shí)際加工情況。
3、 結(jié)論
本項(xiàng)目開(kāi)發(fā)出具有獨(dú)立知識(shí)產(chǎn)權(quán)的基于邁克爾遜干涉儀實(shí)時(shí)測(cè)量監(jiān)控系統(tǒng)。該系統(tǒng)已經(jīng)用于玻璃基板V型槽加工的實(shí)時(shí)檢測(cè)中,有效地保證的光通信用玻璃基板V型槽的精度要求,并在國(guó)內(nèi)率先批量生產(chǎn)出高良率的光纖通信用玻璃基板V型槽,有利于推動(dòng)我國(guó)光纖到戶工程。
參考文獻(xiàn)
[1]胡永明. 全保偏光纖邁克爾遜干涉儀[J]。中國(guó)激光,1997 ,24 (10) :892 - 894
[論文摘要]光纖通信因其具有的損耗低、傳輸頻帶寬、容量大、體積小、重量輕、抗電磁干擾、不易串音等優(yōu)點(diǎn),備受業(yè)內(nèi)人士青睞,發(fā)展非常迅速。目前,光纖光纜已經(jīng)進(jìn)入了有線通信的各個(gè)領(lǐng)域,包括郵電通信、廣播通信、電力通信和軍用通信等領(lǐng)域。綜述我國(guó)光纖通信研究現(xiàn)狀及其發(fā)展。
近年來(lái),光纖通信技術(shù)得到了長(zhǎng)足的發(fā)展,新技術(shù)不斷涌現(xiàn),這大幅提高了通信能力,并使光纖通信的應(yīng)用范圍
不斷擴(kuò)大。
一、我國(guó)光纖光纜發(fā)展的現(xiàn)狀
(一)普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統(tǒng)的發(fā)展,光中繼距離和單一波長(zhǎng)信道容量增大,G.652.A光纖的性能還有可能進(jìn)一步優(yōu)化,表現(xiàn)在1550rim區(qū)的低衰減系數(shù)沒(méi)有得到充分的利用和光纖的最低衰減系數(shù)和零色散點(diǎn)不在同一區(qū)域。符合ITUTG.654 規(guī)定的截止波長(zhǎng)位移單模光纖和符合G.653 規(guī)定的色散位移單模光纖實(shí)現(xiàn)了這樣的改進(jìn)。
(二)核心網(wǎng)光纜
我國(guó)已在干線(包括國(guó)家干線、省內(nèi)干線和區(qū)內(nèi)干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G.652光纖和G.655光纖。G.653光纖雖然在我國(guó)曾經(jīng)采用過(guò),但今后不會(huì)再發(fā)展。G.654光纖因其不能很大幅度地增加光纖系統(tǒng)容量,它在我國(guó)的陸地光纜中沒(méi)有使用過(guò)。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經(jīng)使用過(guò)的緊套層絞式和骨架式結(jié)構(gòu),目前已停止使用。
(三)接入網(wǎng)光纜
接入網(wǎng)中的光纜距離短,分支多,分插頻繁,為了增加網(wǎng)的容量,通常是增加光纖芯數(shù)。特別是在市內(nèi)管道中,由于管道內(nèi)徑有限,在增加光纖芯數(shù)的同時(shí)增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網(wǎng)使用G.652普通單模光纖和G.652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復(fù)用,目前在我國(guó)已有少量的使用。
(四)室內(nèi)光纜
室內(nèi)光纜往往需要同時(shí)用于話音、 數(shù)據(jù)和視頻信號(hào)的傳輸。并目還可能用于遙測(cè)與傳感器。國(guó)際電工委員會(huì)(IEC)在光纜分類(lèi)中所指的室內(nèi)光纜,筆者認(rèn)為至少應(yīng)包括局內(nèi)光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機(jī)房?jī)?nèi),布放緊密有序和位置相對(duì)固定。綜合布線光纜布放在用戶端的室內(nèi),主要由用戶使用,因此對(duì)其易損性應(yīng)比局用光纜有更嚴(yán)格的考慮。
(五)電力線路中的通信光纜
光纖是介電質(zhì),光纜也可作成全介質(zhì),完全無(wú)金屬。這樣的全介質(zhì)光纜將是電力系統(tǒng)最理想的通信線路。用于電力線桿路敷設(shè)的全介質(zhì)光纜有兩種結(jié)構(gòu):即全介質(zhì)自承式(ADSS)結(jié)構(gòu)和用于架空地線上的纏繞式結(jié)構(gòu)。ADSS光纜因其可以單獨(dú)布放,適應(yīng)范圍廣,在當(dāng)前我國(guó)電力輸電系統(tǒng)改造中得到了廣泛的應(yīng)用。ADSS光纜在國(guó)內(nèi)的近期需求量較大,是目前的一種熱門(mén)產(chǎn)品。
二、光纖通信技術(shù)的發(fā)展趨勢(shì)
對(duì)光纖通信而言,超高速度、超大容量和超長(zhǎng)距離傳輸一直是人們追求的目標(biāo),而全光網(wǎng)絡(luò)也是人們不懈追求的夢(mèng)想。
(一)超大容量、超長(zhǎng)距離傳輸技術(shù)波分復(fù)用技術(shù)極大地提高了光纖傳輸系統(tǒng)的傳輸容量,在未來(lái)跨海光傳輸系統(tǒng)中有廣闊的應(yīng)用前景。近年來(lái)波分復(fù)用系統(tǒng)發(fā)展迅猛,目前1.6 Tbit/的 WDM系統(tǒng)已經(jīng)大量商用,同時(shí)全光傳輸距離也在大幅擴(kuò)展。提高傳輸容量的另一種途徑是采用光時(shí)分復(fù)用(OTDM)技術(shù),與 WDM通過(guò)增加單根光纖中傳輸?shù)男诺罃?shù)來(lái)提高其傳輸容量不同,OTDM技術(shù)是通過(guò)提高單信道速率來(lái)提高傳輸容量,其實(shí)現(xiàn)的單信道最高速率達(dá)640Gbit/s。
僅靠OTDM和WDM來(lái)提高光通信系統(tǒng)的容量畢竟有限,可以把多個(gè)OTDM信號(hào)進(jìn)行波分復(fù)用,從而大幅提高傳輸容量。偏振復(fù)用(PDM)技術(shù)可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號(hào)在超高速通信系統(tǒng)中占空較小,降低了對(duì)色散管理分布的要求,且RZ編碼方式對(duì)光纖的非線性和偏振模色散(PMD)的適應(yīng)能力較強(qiáng),因此現(xiàn)在的超大容量WDM/OTDM通信系統(tǒng)基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統(tǒng)需要解決的關(guān)鍵技術(shù)基本上都包括在OTDM和WDM通信系統(tǒng)的關(guān)鍵技術(shù)中。
(二)光孤子通信。光孤子是一種特殊的ps數(shù)量級(jí)的超短光脈沖,由于它在光纖的反常色散區(qū),群速度色散和非線性效應(yīng)相互平衡,因而經(jīng)過(guò)光纖長(zhǎng)距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實(shí)現(xiàn)長(zhǎng)距離無(wú)畸變的通信,在零誤碼的情況下信息傳遞可達(dá)萬(wàn)里之遙。
光孤子技術(shù)未來(lái)的前景是:在傳輸速度方面采用超長(zhǎng)距離的高速通信,時(shí)域和頻域的超短脈沖控制技術(shù)以及超短脈沖的產(chǎn)生和應(yīng)用技術(shù)使現(xiàn)行速率10~20Gbit/s提高到100 Gbit/s以上;在增大傳輸距離方面采用重定時(shí)、整形、再生技術(shù)和減少ASE,光學(xué)濾波使傳輸距離提高到100000km以上;在高性能 EDFA 方面是獲得低噪聲高輸出EDFA。當(dāng)然實(shí)際的光孤子通信仍然存在許多技術(shù)難題,但目前已取得的突破性進(jìn)展使人們相信,光孤子通信在超長(zhǎng)距離、高速、大容量的全光通信中,尤其在海底光通信系統(tǒng)中,有著光明的發(fā)展前景。
(三)全光網(wǎng)絡(luò)。未來(lái)的高速通信網(wǎng)將是全光網(wǎng)。全光網(wǎng)是光纖通信技術(shù)發(fā)展的最高階段,也是理想階段。傳統(tǒng)的光網(wǎng)絡(luò)實(shí)現(xiàn)了節(jié)點(diǎn)間的全光化,但在網(wǎng)絡(luò)結(jié)點(diǎn)處仍采用電器件,限制了目前通信網(wǎng)干線總?cè)萘康倪M(jìn)一步提高,因此真正的全光網(wǎng)已成為一個(gè)非常重要的課題。
全光網(wǎng)絡(luò)以光節(jié)點(diǎn)代替電節(jié)點(diǎn),節(jié)點(diǎn)之間也是全光化,信息始終以光的形式進(jìn)行傳輸與交換,交換機(jī)對(duì)用戶信息的處理不再按比特進(jìn)行,而是根據(jù)其波長(zhǎng)來(lái)決定路由。
目前,全光網(wǎng)絡(luò)的發(fā)展仍處于初期階段,但它已顯示出了良好的發(fā)展前景。從發(fā)展趨勢(shì)上看,形成一個(gè)真正的、以 WDM技術(shù)與光交換技術(shù)為主的光網(wǎng)絡(luò)層,建立純粹的全光網(wǎng)絡(luò),消除電光瓶頸已成為未來(lái)光通信發(fā)展的必然趨勢(shì),更是未來(lái)信息網(wǎng)絡(luò)的核心,也是通信技術(shù)發(fā)展的最高級(jí)別,更是理想級(jí)別。
三、結(jié)語(yǔ)
光通信技術(shù)作為信息技術(shù)的重要支撐平臺(tái),在未來(lái)信息社會(huì)中將起到重要作用。雖然經(jīng)歷了全球光通信的“冬天”但今后光通信市場(chǎng)仍然將呈現(xiàn)上升趨勢(shì)。從現(xiàn)代通信的發(fā)展趨勢(shì)來(lái)看,光纖通信也將成為未來(lái)通信發(fā)展的主流。人們期望的真正的全光網(wǎng)絡(luò)的時(shí)代也會(huì)在不遠(yuǎn)的將來(lái)到來(lái)。
參考文獻(xiàn)
[1]辛化梅、李忠,論光纖通信技術(shù)的現(xiàn)狀及發(fā)展[J]. 山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,(04)
關(guān)鍵詞:無(wú)線網(wǎng)絡(luò);軍隊(duì);安全;物理層安全;可見(jiàn)光通信
中圖分類(lèi)號(hào):TN 929.3
文獻(xiàn)標(biāo)識(shí)碼:A
DOI: 10.3969/j.issn.1003-6970.2015.08.004
0 引言
進(jìn)入二十一世紀(jì)的第二個(gè)十年以來(lái),信息已經(jīng)成為人類(lèi)社會(huì)文明進(jìn)步的要素資源,成為現(xiàn)代社會(huì)持續(xù)發(fā)展的基本條件。信息網(wǎng)絡(luò)空間已經(jīng)成為繼陸、海、空、天之后的第五大國(guó)家疆域,成為世界各國(guó)戰(zhàn)略競(jìng)爭(zhēng)的重要領(lǐng)域。信息安全已成為與國(guó)防安全、能源安全、糧食安全并列的四大國(guó)家安全領(lǐng)域之一。
近些年來(lái),以美國(guó)為代表的信息技術(shù)強(qiáng)國(guó)利用自身所壟斷的全球信息技術(shù)優(yōu)勢(shì),加緊構(gòu)建信息安全保障和攻擊體系,以進(jìn)一步鞏固其在網(wǎng)絡(luò)空間的統(tǒng)治地位。在美國(guó)現(xiàn)有的國(guó)家信息安全體系中,政府、IT企業(yè)和社會(huì)團(tuán)體分工協(xié)作,相互配合,共同推進(jìn)美國(guó)國(guó)家和軍隊(duì)的信息安全體系建設(shè)。當(dāng)前,美國(guó)政府部門(mén)作為信息安全戰(zhàn)略制定、網(wǎng)絡(luò)和信息安全項(xiàng)目策劃、網(wǎng)絡(luò)情報(bào)偵查、網(wǎng)絡(luò)防御以及網(wǎng)絡(luò)進(jìn)攻的主導(dǎo)者,引領(lǐng)了整個(gè)美國(guó)信息安全領(lǐng)域的發(fā)展和規(guī)劃。其主要部門(mén)包括國(guó)土安全部、國(guó)防部、美軍網(wǎng)電司令部、商務(wù)部、聯(lián)邦調(diào)查局以及中央情報(bào)局;美國(guó)的IT企業(yè)則是網(wǎng)絡(luò)攻防的具體實(shí)施機(jī)構(gòu)和重要支撐單位,是美國(guó)政府和軍隊(duì)海量情報(bào)數(shù)據(jù)的來(lái)源,同時(shí)也是實(shí)施網(wǎng)絡(luò)作戰(zhàn)的實(shí)施主體;而美國(guó)及其盟國(guó)中一些非營(yíng)利性團(tuán)體和學(xué)術(shù)組織則為美國(guó)政府和軍隊(duì)提供了輿論和技術(shù)層面的支持,同時(shí)進(jìn)行了人才的輸出,以支撐日益強(qiáng)大的美國(guó)信息作戰(zhàn)部隊(duì)。
隨著無(wú)線與移動(dòng)通信技術(shù)的高速發(fā)展,拋開(kāi)有線束縛的無(wú)線通信技術(shù)為國(guó)家和軍隊(duì)的指揮和作戰(zhàn)帶來(lái)了極大的便利性,然而也埋下了極大的安全隱患。截至2014年年底,美國(guó)情報(bào)和軍隊(duì)相關(guān)部門(mén)在無(wú)線網(wǎng)絡(luò)中偵收和攻擊獲得的情報(bào)已經(jīng)占到美國(guó)情報(bào)總量的約57.6%,凸顯了當(dāng)前國(guó)家和軍隊(duì)無(wú)線網(wǎng)絡(luò)安全的嚴(yán)峻態(tài)勢(shì)。美軍網(wǎng)電司令部2015年戰(zhàn)略規(guī)劃指南顯示,未來(lái)美軍網(wǎng)電部隊(duì)將把無(wú)線領(lǐng)域作為網(wǎng)絡(luò)攻防作戰(zhàn)的重點(diǎn),這對(duì)我國(guó)國(guó)防和軍隊(duì)網(wǎng)絡(luò)安全體系和技術(shù)提出了新的考驗(yàn)。本論文從歷史出發(fā),對(duì)交換技術(shù)進(jìn)行了簡(jiǎn)要的回顧,指出了當(dāng)前交換網(wǎng)絡(luò)發(fā)展的瓶頸以及問(wèn)題,并基于前沿的下一代智能網(wǎng)絡(luò)以及大數(shù)據(jù)交換網(wǎng)絡(luò)提出了展望和設(shè)想。
1 軍隊(duì)無(wú)線網(wǎng)絡(luò)安全現(xiàn)狀
我國(guó)的互聯(lián)網(wǎng)、電信網(wǎng)、廣電網(wǎng)和各類(lèi)專(zhuān)網(wǎng)(包含軍網(wǎng))組成的國(guó)家基礎(chǔ)網(wǎng)絡(luò)是國(guó)家和軍隊(duì)信息安全防護(hù)的重要對(duì)象,但是這些基礎(chǔ)社會(huì)建設(shè)過(guò)程中普遍存在著重建輕防,甚至只建不防的問(wèn)題,造成網(wǎng)絡(luò)信息安全體系構(gòu)建的極大障礙。
當(dāng)前,我軍無(wú)線網(wǎng)絡(luò)通信手段主要包含戰(zhàn)場(chǎng)衛(wèi)星通信、短波電臺(tái)通信、水下潛艇長(zhǎng)波通信等戰(zhàn)時(shí)通信手段,以及軍隊(duì)日常辦公所使用的蜂窩網(wǎng)移動(dòng)手機(jī)通信、單位無(wú)線局域網(wǎng)(Wi-Fi)以及家庭使用的寬帶及家庭無(wú)線局域網(wǎng)等非戰(zhàn)時(shí)通信手段。由于戰(zhàn)時(shí)通信技術(shù)具有較強(qiáng)的應(yīng)用層加密以及物理層跳頻和擴(kuò)頻保障,傳統(tǒng)的竊密和攻擊手段并不能很快奏效,反而是和平時(shí)期工作用無(wú)線局域網(wǎng)、個(gè)人手機(jī)、家庭Wi-Fi等上網(wǎng)和通話極易被偵聽(tīng)和竊密,導(dǎo)致無(wú)意識(shí)泄密。據(jù)不完全統(tǒng)計(jì),2014年以來(lái)軍隊(duì)、軍工企業(yè)等軍事相關(guān)單位因手機(jī)、家庭寬帶/Wi-Fi等被攻擊及竊聽(tīng)的事件約470起,造成不可估量的軍事、經(jīng)濟(jì)以及國(guó)家核心技術(shù)損失。
美國(guó)憑借其在信息領(lǐng)域的絕對(duì)優(yōu)勢(shì),不斷將其技術(shù)和設(shè)備輸出到中國(guó),而國(guó)產(chǎn)化設(shè)備的低性能、高價(jià)格等不足進(jìn)一步導(dǎo)致了黨政軍系統(tǒng)中日常無(wú)線網(wǎng)絡(luò)通信設(shè)備國(guó)產(chǎn)化程度極低,使得日常無(wú)線網(wǎng)絡(luò)的安全防線處于近乎失靈的狀態(tài)。在美國(guó)IT跨國(guó)公司和美國(guó)網(wǎng)絡(luò)部隊(duì)等諸如“棱鏡”項(xiàng)目面前,我軍的基礎(chǔ)網(wǎng)絡(luò)和重要信息系統(tǒng)幾乎完全處于不設(shè)防狀態(tài)。諸如思科、微軟、英特爾、IBM等IT企業(yè)幾乎完全控制了我國(guó)高端IT產(chǎn)品的生產(chǎn)及應(yīng)用。據(jù)Gartner數(shù)據(jù)顯示,Windows系列操作系統(tǒng)在我國(guó)市場(chǎng)占有率超過(guò)9成,英特爾在微處理器市場(chǎng)上占有率也超過(guò)8成,谷歌的安卓操作系統(tǒng)在我國(guó)市場(chǎng)占有率達(dá)到8成。即使是國(guó)產(chǎn)的聯(lián)想、酷派等手機(jī),其核心芯片和操作系統(tǒng)也多是國(guó)外生產(chǎn),使得我國(guó)無(wú)法從技術(shù)層面根除安全隱患。
2 解決方案:物理層安全技術(shù)和可見(jiàn)光通信技術(shù)
針對(duì)目前日常軍隊(duì)無(wú)線網(wǎng)絡(luò)安全性的問(wèn)題,本文提出了兩種可行的改進(jìn)方案,能夠在現(xiàn)有技術(shù)的基礎(chǔ)上,從防止無(wú)線信號(hào)被偵收和泄漏的角度實(shí)現(xiàn)日常狀態(tài)下部隊(duì)營(yíng)區(qū)無(wú)線通信的安全保密。
在現(xiàn)有的通信系統(tǒng)中,通信的保密性主要依賴(lài)于基于計(jì)算密碼學(xué)的加密體制,早在20世紀(jì)初就已有人提出將傳輸?shù)男畔⑴c密鑰取異或的方法來(lái)增強(qiáng)信息傳遞的安全性。這種基于密鑰的加密方法首次由Shannon于1949年給出了數(shù)學(xué)的理論分析。假設(shè)發(fā)送者希望把信息M秘密地發(fā)送給接收者,稱(chēng)M為明文信息。則加密的過(guò)程為,在發(fā)送端,發(fā)送者通過(guò)密鑰K以及加密算法f對(duì)所要傳輸?shù)拿魑腗進(jìn)行加密,得到密文S。在接收端,接收者通過(guò)密鑰K以及與加密算法相應(yīng)的解密算法,我們用f-1標(biāo)記,來(lái)進(jìn)行解密,從而得到明文M。通過(guò)對(duì)加解密過(guò)程的觀察,可以得知,有兩個(gè)方法防止竊聽(tīng)者從竊聽(tīng)到的S中獲取明文M: 一個(gè)是竊聽(tīng)者不知道密鑰K,另外一個(gè)是解密算法非常困難,竊聽(tīng)者難以在有限的時(shí)間用有限的資源進(jìn)行解密?;谶@兩個(gè)方法,延伸出了現(xiàn)代通信系統(tǒng)中非常常見(jiàn)的兩種加密形式,一個(gè)是對(duì)稱(chēng)密鑰加密,一個(gè)是非對(duì)稱(chēng)密鑰加密。
現(xiàn)代密碼學(xué)的加密體制主要是在物理層之上的幾層來(lái)實(shí)現(xiàn)的,譬如MAC層、網(wǎng)絡(luò)層、應(yīng)用層等等,故有時(shí)也稱(chēng)基于現(xiàn)代密碼學(xué)的安全為上層安全。物理層對(duì)于現(xiàn)代密碼學(xué)加密體制來(lái)說(shuō)是透明的,即物理層安全與上層安全是獨(dú)立的。下面分別介紹物理層安全的兩個(gè)基礎(chǔ)知識(shí),分別是:竊聽(tīng)信道模型和安全傳輸速率。竊聽(tīng)信道模型是物理層安全所研究的基本信道模型,安全傳輸速率是衡量物理層安全系統(tǒng)性能的重要指標(biāo)。
物理層安全主要是利用特殊的信道編碼和無(wú)線信道的隨機(jī)特性使得秘密通信得以進(jìn)行,它與現(xiàn)代密碼學(xué)不同之處在于,其安全程度并不依賴(lài)于Eve的計(jì)算強(qiáng)度,而是依賴(lài)無(wú)線信道環(huán)境的隨機(jī)特性。但是,從保密環(huán)節(jié)上來(lái)說(shuō),物理層安全與傳統(tǒng)的計(jì)算密碼學(xué)的安全卻有著本質(zhì)的相似之處。如圖1所示。物理層安全中的編碼調(diào)制環(huán)節(jié)和信道的隨機(jī)性是安全通信的必要條件,正如現(xiàn)代密碼學(xué)體制中的加密算法和密鑰。編碼調(diào)制環(huán)節(jié)是指Alice根據(jù)Alice-Bob和Alice-Eve信道的信道條件,通過(guò)獨(dú)特的信道編碼來(lái)保證Alice與Bob之間安全又可靠的通信。從安全的角度來(lái)說(shuō),編碼調(diào)制環(huán)境可以被看作現(xiàn)代密碼學(xué)中的加密過(guò)程,信息加密后生成的密文記為Xn。密文經(jīng)過(guò)無(wú)線信道和解調(diào)譯碼可以等同為現(xiàn)代密碼學(xué)中的解密環(huán)節(jié),其中信道信息{h,g}可以看作公共密鑰,而B(niǎo)ob接收端的噪聲可以看作Bob的私鑰,Eve是沒(méi)有辦法獲得的。因此密文通過(guò)Bob的無(wú)線信道和解調(diào)譯碼,可以被Bob正確地譯碼解密;而此密文通過(guò)Eve的無(wú)線信道和解調(diào)譯碼,Eve是不能獲得任何信息的。由此可見(jiàn),雖然物理層安全與傳統(tǒng)的基于現(xiàn)代密碼學(xué)的加密原理是完全不同的,但是它們?cè)趯?shí)現(xiàn)框架上卻也能夠找到共同點(diǎn)。物理層安全可以看作是以調(diào)制編碼等發(fā)送端的技術(shù)為“加密算法”,充分利用Alice-Bob和Alice-Eve之間無(wú)線信道的差異性,把無(wú)線信道看作“加密密鑰”,從而使得Alice與Bob之間形成了安全可靠的通信。
物理層安全技術(shù)由于可以獨(dú)立于上層而單獨(dú)實(shí)現(xiàn)秘密通信,因此在無(wú)線通信系統(tǒng)中,可以在保證現(xiàn)有上層安全措施不變的情況下,補(bǔ)充物理層傳輸?shù)陌踩_@使得通信系統(tǒng)的安全性能得到額外一層的保護(hù)。另一方面,將物理層安全用來(lái)傳輸現(xiàn)代密碼學(xué)中的密鑰,也是增強(qiáng)系統(tǒng)的安全性的一種方法。
從實(shí)現(xiàn)的角度講,當(dāng)前傳統(tǒng)的無(wú)線路由器等均使用了全向天線進(jìn)行傳輸,有可能導(dǎo)致無(wú)線信號(hào)泄漏至營(yíng)區(qū)外部造成泄密。由于物理層安全技術(shù)方案的存在,除了進(jìn)行傳統(tǒng)的上層密碼和傳輸加密以外,考慮利用物理層定向天線和波束賦形技術(shù)使得無(wú)線信號(hào)定向的向營(yíng)區(qū)內(nèi)部輻射,使得竊聽(tīng)者獲取的信息量近乎為0,從而進(jìn)一步降低失泄密的風(fēng)險(xiǎn),這是物理層安全技術(shù)在現(xiàn)有無(wú)線網(wǎng)絡(luò)中的應(yīng)用改進(jìn)。
根據(jù)香農(nóng)公式,假設(shè)發(fā)射端信號(hào)表示為:y=hx+z,那么正常接收者bob收到的信號(hào)可以表示為:
此時(shí)人造噪聲設(shè)計(jì)對(duì)Bob沒(méi)有產(chǎn)生干擾的方向上均勻分布,從而實(shí)現(xiàn)了對(duì)目標(biāo)用戶的正常信號(hào)發(fā)送,但是使得竊聽(tīng)用戶獲得的干擾最大化,可用信息最小。
可見(jiàn)光通信(Visible Light Communications)是指利用可見(jiàn)光波段的光作為信息載體,不使用光纖等有線信道的傳輸介質(zhì),而在空氣中直接傳輸光信號(hào)的通信方式,簡(jiǎn)稱(chēng)“VLC”。
普通的燈具如白熾燈、熒光燈(節(jié)能燈)不適合當(dāng)作光通信的光源,而LED燈非常適合做可見(jiàn)光通信的光源。可見(jiàn)光通信技術(shù)可以通過(guò)LED燈在完成照明功能的同時(shí),實(shí)現(xiàn)數(shù)據(jù)網(wǎng)絡(luò)的覆蓋,用戶可以方便地使用自己的手機(jī)、平板電腦等移動(dòng)智能終端接收這些燈光發(fā)送的信息。該技術(shù)可廣泛用于導(dǎo)航定位、安全通信與支付、智能交通管控、智能家居、超市導(dǎo)購(gòu)、燈箱廣告等領(lǐng)域,特別是在不希望或不可能使用無(wú)線電傳輸網(wǎng)絡(luò)的場(chǎng)合比如飛機(jī)上、醫(yī)院里更能發(fā)揮它的作用。可見(jiàn)光通信兼顧照明與通信,具有傳輸數(shù)據(jù)率高、安全性強(qiáng)、無(wú)電磁干擾、節(jié)能、無(wú)需頻譜認(rèn)證等優(yōu)點(diǎn),帶寬是Wi-Fi的1萬(wàn)倍、第四代移動(dòng)通信技術(shù)的100倍,是理想的室內(nèi)高速無(wú)線接人方案之一。
據(jù)美國(guó)DAPRA報(bào)道,美軍已經(jīng)生產(chǎn)出軍用可見(jiàn)光網(wǎng)絡(luò)及相關(guān)設(shè)備,用于國(guó)防部等軍事機(jī)關(guān)和設(shè)施的高速無(wú)線網(wǎng)絡(luò)通信。由于可見(jiàn)光室內(nèi)傳輸光源直接指向用戶且傳輸距離遠(yuǎn)小于傳統(tǒng)的微波無(wú)線通信,在不考慮人為主動(dòng)泄密的情況下,可見(jiàn)光通信信號(hào)是無(wú)法截獲的,從技術(shù)上為通信的有效性和可靠性提供了強(qiáng)有力的支撐。
圖2給出了微波無(wú)線通信和可見(jiàn)光通信之間的比較。對(duì)于手機(jī)、Wi-Fi等微波無(wú)線通信手段,除了目標(biāo)用戶能夠接收到無(wú)線信號(hào)以外,由于無(wú)線電波是全向發(fā)射的,竊聽(tīng)者完全可以收到相同的信號(hào),從而進(jìn)行破譯或者攻擊,帶來(lái)安全隱患;而可見(jiàn)光通信依賴(lài)于室內(nèi)的LED燈具,通常燈具會(huì)直接部署在工位上方,而照明具有定向發(fā)射的特點(diǎn),因此位于營(yíng)區(qū)外部的竊聽(tīng)者無(wú)法收到任何信號(hào),不能進(jìn)行竊聽(tīng)。從實(shí)現(xiàn)上講,可見(jiàn)光通信可以方便的利用LED臺(tái)燈、屋頂燈等照明燈具,通過(guò)加裝調(diào)制解調(diào)模塊即可使得燈具具有高速數(shù)據(jù)傳輸功能,可供營(yíng)區(qū)內(nèi)臺(tái)式機(jī)、筆記本電腦、平板電腦等高速無(wú)線上網(wǎng),滿足高清視頻會(huì)議等高帶寬需求。
目前,關(guān)于可見(jiàn)光通信在室內(nèi)外各種復(fù)雜環(huán)境下的信道測(cè)量與建模的工作還很欠缺,只有少量的研究結(jié)果。尤其是在有強(qiáng)光干擾、煙霧和灰塵遮擋的環(huán)境下的信道干擾模型,更是需要亟待解決的問(wèn)題。
3 結(jié)論
軍隊(duì)作為國(guó)家的武裝力量,其信息安全問(wèn)題尤為重要。在和平時(shí)期,如何從技術(shù)手段保證軍隊(duì)手機(jī)、Wi-Fi等無(wú)線通信安全,防止和平時(shí)期敵對(duì)勢(shì)力進(jìn)行的無(wú)線網(wǎng)絡(luò)信號(hào)偵收和網(wǎng)絡(luò)攻擊,是當(dāng)前要重點(diǎn)關(guān)注的問(wèn)題。
10月6日下午,2009年諾貝爾物理學(xué)獎(jiǎng)揭曉,高錕與美國(guó)貝爾實(shí)驗(yàn)室的威拉德?博伊爾(Willard Boyle)、喬治?史密斯(George Smith)共獲殊榮。高錕的獲獎(jiǎng)成果,是在英國(guó)標(biāo)準(zhǔn)電訊實(shí)驗(yàn)室完成的。后來(lái),他在香港中文大學(xué)做過(guò)九年校長(zhǎng)(1987年至1996年),直至退休。
由于在光纖通信領(lǐng)域的開(kāi)創(chuàng)性成就,高錕將獲得約140萬(wàn)美元獎(jiǎng)金的一半,博伊爾和史密斯發(fā)明了用于數(shù)字圖像技術(shù)的CCD傳感器,將各獲四分之一的獎(jiǎng)金。
三位科學(xué)家40年前的研究,幫助構(gòu)建了當(dāng)下的信息時(shí)代,也為自己贏得了諾貝爾獎(jiǎng)。
高錕與低損耗光纖
20世紀(jì)60年代初,激光器的發(fā)明給光通信研究帶來(lái)了新的希望――激光束不僅具有亮度高等優(yōu)點(diǎn),還可以在光纖中傳播。
但由于缺乏穩(wěn)定、可靠和低損耗的傳輸介質(zhì),光通信似乎仍是一個(gè)遙不可及的目標(biāo),因?yàn)楣庑盘?hào)在當(dāng)時(shí)的光纖材料中只能傳輸20米。
當(dāng)時(shí),高錕是國(guó)際電話電報(bào)公司旗下英國(guó)標(biāo)準(zhǔn)電訊實(shí)驗(yàn)室的一名研究人員。他1933年11月出生在上海的一個(gè)書(shū)香門(mén)第,孩提時(shí)代的他就喜歡科學(xué)實(shí)驗(yàn),甚至自制過(guò)小型炸藥彈丸。
后來(lái),高錕隨家人遷居香港,曾在香港圣約瑟書(shū)院就讀。1954年,他遠(yuǎn)赴英倫,在倫敦大學(xué)攻讀電機(jī)工程。
與不少同行因此對(duì)光纖傳輸?shù)募夹g(shù)前景產(chǎn)生懷疑不同,高錕研究團(tuán)隊(duì)認(rèn)為更值得關(guān)注的,是光纖原材料問(wèn)題。
他后來(lái)回憶道:“那時(shí)面對(duì)的最大難題,就是玻璃的雜質(zhì)問(wèn)題。玻璃看似透明,其實(shí)雜有不純的元素,所以我們構(gòu)想,假若有一種沒(méi)有雜質(zhì)的玻璃,光波的傳導(dǎo)就不會(huì)衰減?!?/p>
1966年6月,高錕與同事喬治?霍肯(George Hockham)在《電氣電子工程師學(xué)會(huì)學(xué)報(bào)》上發(fā)表題為“用于光頻的光纖表面波導(dǎo)”的論文指出,提純?cè)牧虾罂芍圃斐鲞m合長(zhǎng)距離通信使用的低損耗光纖:在純的玻璃纖維中,光信號(hào)可傳輸100公里以上。
這一研究奠定了光纖通信的基礎(chǔ)。這一年,他年僅32歲。1970年,美國(guó)康寧公司研制出第一種超純光纖。1975年,英國(guó)安裝了世界上第一套光纖通信系統(tǒng)。
北京郵電大學(xué)前校長(zhǎng)林金桐對(duì)記者說(shuō):“從高錕和霍肯的論文,到世界上第一個(gè)商用光纖通信系統(tǒng)的誕生,僅用了十年時(shí)間,這在重大科學(xué)研究成果向現(xiàn)實(shí)生產(chǎn)力轉(zhuǎn)化的眾多案例中,顯得格外突出?!?/p>
諾貝爾獎(jiǎng)評(píng)委會(huì)在新聞公報(bào)中表示,這些低損耗的玻璃纖維推動(dòng)了因特網(wǎng)等寬帶通信的發(fā)展,光在這些玻璃纖維中流動(dòng),文本、音樂(lè)、圖像和視頻可在瞬間進(jìn)行全球傳輸,“如果我們拆開(kāi)密布全球的玻璃纖維,將得到一條10億公里以上的長(zhǎng)線,足夠環(huán)繞地球2.5萬(wàn)多圈。”
香港中文大學(xué)前任校長(zhǎng)金耀基甚至將高錕研究成果的重要性,與印刷術(shù)、火藥、指南針等中國(guó)古明相提并論,“今天生活在網(wǎng)絡(luò)社會(huì),就是因?yàn)楣饫w的發(fā)明改變了我們的生活?!?更多關(guān)于高錕的資料,見(jiàn)本期“華人”欄目)
貝爾實(shí)驗(yàn)室和CCD
在現(xiàn)代的高速網(wǎng)絡(luò)通信中,數(shù)字圖像是最主要的承載內(nèi)容,而這很大程度上要?dú)w功于本年度諾貝爾物理學(xué)獎(jiǎng)的另一項(xiàng)獲獎(jiǎng)內(nèi)容――美國(guó)朗訊公司貝爾實(shí)驗(yàn)室的威拉德?博伊爾和喬治?史密斯發(fā)明的用于數(shù)字圖像的裝置:電荷耦合器件(Charge Coupled Device,CCD)。
博伊爾1924年出生于加拿大,26歲時(shí)在加拿大麥基爾大學(xué)獲得博士學(xué)位。他在1953年加入貝爾實(shí)驗(yàn)室,并在1962年與同事首先發(fā)明了可以連續(xù)運(yùn)行的紅寶石激光器。
史密斯1930年出生于美國(guó),29歲時(shí)在美國(guó)芝加哥大學(xué)獲得博士學(xué)位后也進(jìn)入貝爾實(shí)驗(yàn)室。
1969年10月的一天,史密斯走進(jìn)同在貝爾實(shí)驗(yàn)室半導(dǎo)體研究部門(mén)工作的博伊爾的辦公室,兩人進(jìn)行了一場(chǎng)“頭腦風(fēng)暴”。在不到兩個(gè)小時(shí)的時(shí)間里,博伊爾和史密斯在黑板上大致勾繪出一種新裝置的藍(lán)圖,兩人將其命名為電荷耦合器件。
這種新技術(shù)的源頭,還要追溯到愛(ài)因斯坦提出的光電效應(yīng),即通過(guò)光電效應(yīng),光可以被轉(zhuǎn)變?yōu)殡娦盘?hào)。然而,如何在極短時(shí)間內(nèi)收集并讀出信號(hào),看上去卻是一個(gè)無(wú)法逾越的技術(shù)挑戰(zhàn)。因此,一開(kāi)始,很多同行都對(duì)CCD的概念嗤之以鼻。
但博伊爾和史密斯堅(jiān)信自己的想法,并成功地將藍(lán)圖變成了現(xiàn)實(shí)。他們采用特殊的硅半導(dǎo)體材料,并將硅片細(xì)分為一個(gè)個(gè)“單元格”或者說(shuō)“像素”,這樣,當(dāng)光照射到像素之上,會(huì)產(chǎn)生信號(hào)電荷。當(dāng)時(shí),很多電子器件以電流或電壓作為信號(hào),CCD則采用電荷作為信號(hào)。
信號(hào)電荷不僅可以在CCD內(nèi)存貯,還可以穿越一排排的“像素”,在電極與電極之間快速傳輸(電荷耦合),并最終被讀出。
CCD的發(fā)明,帶來(lái)了攝影的一場(chǎng)革命。光能夠被電子化捕捉,而不再需要傳統(tǒng)的感光膠卷,數(shù)碼相機(jī)也得以走進(jìn)千家萬(wàn)戶。