前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇電源設計論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
本設計是DC/DC直流開關電源設計,首先將開關電源與線性電源進行對比,總結了開關電源的優點,并對其當前的發展以及在發展中存在的問題進行了描述,然后在對開關電源的整體結構進行了介紹的基礎上,對開關電源的主回路和控制回路進行設計:在主回路中整流電路采用單相橋式、功率轉換電路采用單端正激功率轉換電路、采用增加副邊繞組的方法實現多路輸出,其中功率轉換電路(DC/DC變換器)是開關電源的核心部分,對此部分進行了重點設計;控制電路采用PWM控制,控制器采用開關電源集成控制器GW1524、設計了過壓保護電路、電壓檢測電路和電流檢測電路,對各個部分的參數進行了計算并進行了元器件的選型。
【關鍵詞】DC/DC變換器、PWM控制、整流、濾波。
Abstract
Inthispaper,Idesignedaswitchpowersupplysystemwiththreeoutputs:Comparetheswitchpowerwithlinearpoweratfirst,hassummarizedtheadvantageoftheswitchpower,havedescribeditspresentdevelopmentandtherearenaturalquestionsindevelopment.Onthebasisofthethingthatthewholestructuretotheswitchpowerhasmadeanintroduction,tothemainreturncircuitandcontrollingthereturncircuittodesignoftheswitchpower:Therectificationcircuitadoptsthesingle-phasebridgetypeinthemainreturncircuit,thepowerchangesthecircuitandadoptsanddefiesthepowertochangethecircuit,realizebyincreasingthewindingofonepairofsidessingleandwellthatmanywaysareexported,itisakeypartoftheswitchpowersupplythatthepowerchangescircuit(DC/DCtransformer),havedesignedthispartespecially;ThecontrolcircuitadoptsPWMtocontrol,thecontrolleradoptstheswitchpowerintegratedcontrollerGW1524,designthecircuittomeasurevoltageandthecircuittoelmeasureectriccurrent,selectingtypeofcalculatingandcarryingonthecomponentsandpartstheparameterofeachpart.
Keyword:DC/DCtransformer,PWMcontrol,rectification,strainingwaves.
1概述
電子設備都離不開可靠的電源,進入80年代計算機電源全面實現了開關電源化,率先完成計算機的電源換代,進入90年代開關電源相繼進入各種電子、電器設備領域,程控交換機、通訊、電子檢測設備電源、控制設備電源等都已廣泛地使用了開關電源,更促進了開關電源技術的迅速發展。
1.1開關電源的基本原理
開關電源就是采用功率半導體器件作為開關元件,通過周期性通斷開關,控制開關元件的占空比調整輸出電壓,開關電源的基本構成如圖1-1所示,DC-DC變換器是進行功率變換的器件,是開關電源的核心部件,此外還有啟動電路、過流與過壓保護電路、噪聲濾波器等組成部分。反饋回路檢測其輸出電壓,并與基準電壓比較,其誤差通過誤差放大器進行放大,控制脈寬調制電路,再經過驅動電路控制半導體開關的通斷時間,從而調整輸出電壓。
1.2開關電源與線性電源的比較
是先將交流電經過變壓器變壓,再經過整流電路整流濾波得到未穩定的直流電壓,要達到高精度的直流電壓,必須經過電壓反饋調整輸出電壓。它的缺點是需要龐大而笨重的變壓器,所需的濾波電容的體積和重量也相當大,而且電壓反饋電路是工作在線性狀態,調整管上有一定的電壓降,在輸出較大工作電流時,致使調整管的功耗太大,轉換效率低,還要安裝很大的散熱片。這種電源不適合計算機等設備的需要,將逐步被開關電源所取代。
1.3開關電源的發展與應用
當前,開關電源新技術產品正在向以下"四化"的方向發展:應用技術的高頻化;硬件結構的模塊化;軟件控制的數字化;產品性能的綠色化。由此,新一代開關電源產品的技術含量大大提高,使之更加可靠、成熟、經濟、實用。
開關電源高頻化是其發展的方向,高頻化使開關電源小型化,并使開關電源進入更廣泛的應用領域,特別是在高新技術領域的應用,推動了高新技術產品的小型化、輕便化。
近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了"智能化"功率模塊(IPM),這樣縮小了整機的體積,方便了整機設計和制造。為了提高系統的可靠性,有些制造商開發了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件間不再有傳統的引線相連,這樣的模塊經過嚴格、合理的、熱、電、機械方面的設計,達到優化完善的境地。
開關電源是一種采用開關方式控制的直流穩定電源,它以小型、輕量和高效率的特點被廣泛應用于以電子計算機為主導的各種終端設備、通信設備等幾乎所有的電子設備,是當今電子信息產業飛速發展不可缺少的一種電源方式。而當我們把開關電源的研究擴大到可調高電壓、大電流時,以及將研究新技術應用于DC/AC變換器,即開拓了大功率應用領域,又使開關電源的應用范圍擴大到了從發電廠設備至家用電器的所有應用電力、電子技術的電氣工程領域。作為節能、節材、自動化、智能化、機電一體化的基礎的開關電源,它的產品展現了廣闊的市場前景。例如,發電廠的貯能發電設備、直流輸電系統、動態無功補償、機車牽引、交直流電機傳動、不停電電源、汽車電子化、開關電源、中高頻感應加熱設備以及電視、通訊、辦公自動化設備等。
1.4開關電源當前存在的問題
當我們對該技術進行深入研究后卻發現它仍然存在著一些問題需要解決,而且有的問題還帶有全局性:采用定頻調寬的控制方式來設計電源,都以輸出功率最大時所需的續流時間為依據來預留開關截止時間的,則負載所需的功率小于電源的最大輸出功率時就必然造成了工作電流的不連續;"反峰電壓"是開關導通期間存入高頻變壓器的勵磁能量在開關關斷時的一種表現,而勵磁能量只能在、也必須在開關關斷后的截止期間處理掉,既能高效處理勵磁能量又能有效限制反峰電壓的辦法是存在的,那就是要及時地為勵磁能量提供一個"低阻抗通道",并且為勵磁能量的通過提供一段時間,但"單調"控制方法不具備這一條件;高頻變壓器的磁通復位問題;傳統的電流取樣方法是在功率回路中串聯電阻,效率不高,這個問題向來是電源技術,尤其是以小體積、高功率密度見長的開關電源技術發展的"瓶頸";高頻開關電源的并聯同步輸出問題。
以上的問題看似彼此獨立,其實它們之間存在著一定的關聯性解決這些問題,也許還是一條艱難而漫長的路。
2整流電路的設計
整流是將交流電變成脈動直流電的過程。電源變壓器輸出的交流電經整流電路得到一個大小變化但方向不變的脈動直流電。整流電路是由具有單向導電性的元件例如二極管、晶間管等整流元件組成的。
2.1整流電路的選擇
單相整流電路有兩種:電容輸入型電路和扼流圈輸入型電路
電容輸入型的基本電路如圖2-1:(a)為半波整流電路(b)為中間抽頭的全波整流電路(c)橋式整流電路(d)倍壓整流電路。
扼流圈輸入型基本電路,用于負載電流I0較大的電路,扼流圈L的作用是抑制尖峰電流。
關鍵詞:以太網供電(POE);電源供電設備(PSE);受電設備(PD);IEEE802.3af
IEEE802.3af標準對以太網供電(POE)做出了詳盡的規定,它允許通過以太網傳輸數據的同時提供48V電源,IEEE802.3af標準中定義的電源供電設備(PSE)是能夠通過10BASE-T、100BASE-T或者1000BASE-T網絡提供電源的DTE或者Midspan設備,而IEEE802.3af標準中定義的受電設備(PD)則是通過網絡從電源供電設備(PSE)取得電源的設備。IEEE802.3af標準中規定的PSE可以提供約13W功率。從而使小型數據設備可以通過它們的以太網連接獲得電源,而不需要從墻上的交流電源插座獲取電源。這些設備包括數字VoIP電話、網絡無線接入點、因特網設備、計算機電話、安全攝像機或任何以太網連接的數據設備。IEEE802.3af標準的推出,大大擴展了以太網的應用,同時也給以太網帶來了巨大的發展空間。
1MAX5941的功能
MAX5941A/MAX5941B是一款高度集成的電源IC,適用于以太網供電(POE)系統中的受電設備(PD)。MAX5941A/MAX5941B有兩個功能,一是提供PSE與PD之間的接口,二是通過DC-DCPWM控制器實現48V電源轉換以輸出5V或者PD所需要的電壓,輸出電壓可實現隔離或者非隔離。MAX5941A的最大占空比為85%,可用于反激式轉換器。MAX5941B的占空比限制在50%以內,主要用于單端正激式轉換器中。
2IEEE802.3af標準的PD接口特性
MAX5941的PD接口特性符合IEEE802.3af標準,可為PD提供偵測特征信號和分級信號,此外,MAX5941還集成了一個具有可編程浪涌電流控制功能的集成隔離開關,同時還具有寬滯回供電模式欠壓鎖定(UVLO)以及“電源好”狀態輸出等功能。
在偵測和分級期間,由于集成的MOSFET可提供PD隔離,MAX5941可保證偵測階段的泄漏電流失調小于10μA。其可編程限流功能可防止上電期間產生很高的浪涌電流。這些器件的UVLO供電模式具有寬滯回和長故障消隱時間等特性,因而可補償電壓在雙絞電纜上的阻性衰減,并確保系統在偵測、分級和上/掉電諸狀態間無擾動地轉換。MAX5941的UVLO門限可調,并具有一個兼容于IEEE802.3af標準的缺省值。MAX5941可工作于PD前帶有或不帶二級管橋的設計中。
圖1
MAX5941有三種不同的工作模式:PD偵測、PD分級和PD供電模式。
偵測模式(1.4V≤VIN≤10.1V)下,供電設備(PSE)將向VIN施加兩種1.4V~10.1V范圍內的電壓(最小步長1V),然后記錄兩個點的電流值,并由PSE計算ΔV/ΔI,以確認25.5kΩ特征電阻是否存在。在此模式下,MAX5941內部的大部分電路處于關閉狀態,失調電流小于10μA。如果施加在PD上的電壓有可能被顛倒,則需要在輸入端安裝保護二極管,以免對MAX5941造成內部損傷。由于PSE使用斜率技術(ΔV/ΔI)來計算特征阻抗,這樣,保護二極管引起的直流偏差已被扣除,因而不會影響偵測過程。
分級模式(12.6V≤VIN≤20V)下,PSE根據PD所要求的功率對PD進行分級。以便PSE高效地管理功率分配。IEEE802.3af標準定義了五個不同的級別。分級電流可由連接在RCL與VEE之間的外部電阻(RCL)來設定。PSE通過在PD輸入端施加一個電壓,以及測量流出PSE的電流來確定PD的分級。當PSE施加一個介于12.6V~20V之間的電壓時。PSE利用分級電流信息區分PD所需要的功率。分級電流包括25.5kΩ偵測特征電阻吸收的電流和MAX5941的電源電流,PD吸收的總電流應在IEEE802.3af標準要求之內。進入供電模式后,分級電流將被關斷。
供電模式下,當VIN上升至欠壓鎖定門限(VUV-LO,ON)以上時,MAX5941將逐步開啟內部N溝道MOSFET管Q1。圖1是MAX5941的內部接口電路框圖。MAX5941用一個恒流(典型值為10μA)對Q1柵極充電。Q1的漏-柵電容限制了MOSFET漏極電壓的上升速率,因而限制了浪涌電流。為了降低浪涌電流,也可在外部添加漏-柵電容。當Q1的漏-源電壓降至1.2V以下,且柵-源電壓高于5V時,MAX5941會發出“電源好”信號。由于MAX5941具有較寬的UVLO滯回和關斷消隱時間,因而可補償雙絞電纜的高阻抗。
3用MAX5941實現48V電源轉換
MAX5941是電流模式的PWM控制器,可將48V輸入電源轉換成5V電壓輸出,MAX5941用內部穩壓器取代高功耗的啟動電阻,這不但可為MAX5941提供啟動所需的電能,還能穩定第三(偏置)繞組的輸出電壓,從而為IC提供穩定的工作電源。開始啟動時,調節器將V+調整到VCC并為器件提供偏置。啟動之后,改由VDD穩壓器從第三繞組輸出穩定的VCC。此結構只需一只很小的電容即可對第三繞組的輸出進行濾波,從而省下了一只濾波電感的成本。
在設計第三繞組時,所設計的線圈匝數應保證最小反射電壓始終大于12.7V。而最大反射電壓則必須小于36V。
為降低功耗,當VDD電壓達到12.7V后,可以將高壓調節器關掉。這樣可以降低功耗并改善效率。如果VCC降低到欠壓鎖定門限(VCC=6.6V)以下,低壓調節器將被關閉,電路重新進入軟啟動。此時欠壓鎖定狀態MOSFET驅動器的輸出(NDRV)保持為低。
如果輸入電壓介于13~36V之間,只要不超出最大功耗,就可以將V+和VDD連接到線電壓。這樣就可省掉第三繞組。
4MAX5941的設計實例
MAX5941的一般設計步驟如下:
確定具體需求
設定輸出電壓
計算變壓器主、副繞組匝比
計算復位繞組與主繞組匝比
計算第三繞組與主繞組匝比
計算檢流電阻值
計算輸出電感值
選擇輸出電容。
圖2
圖2是用MAX5941B設計的正激式DC/DC轉換器,具體計算如下:
(1)對于30V≤VIN≤67V,VOUT=5V,IOUT=10A,VRIPPLE≤50mV的要求。開啟門限應設為38.6V。
(2)設定輸出電壓時,可根據下式計算電阻R1和R2:
VREF/VOUT=R2/(R1+R2)
式中VREF是并聯調節器的基準電壓。
(3)根據最小輸入電壓和MAX5941B的最大占空比下限(44%)計算變壓器匝比時,為了能夠使用漏-源擊穿電壓小于200V的MOSFET,本設計選用最大占空比為50%的MAX5941B。然后根據下式計算匝數比:
NS/NP≥(VOUT+VD1×DMAX)/(DMAX×VIN_MIN)
式中:NS/NP為匝數比(NS是副繞組匝數,NP是主繞組匝數),VOUT為輸出電壓(5V),VD1為D1上的壓降(功率肖特基二極管典型壓降為0.5V),DMAX為最大工作占空比的最小值(44%),VIN_MIN為最小輸入電壓(30V),對于本例:NS/NP≥0.395,選擇NP=14時,NS=6。
(4)較低的復位繞組匝比(NR/NP)可確保變壓器中的所有能量在最大占空比下的關閉周期內能夠全部返回V+。可用下式來確定復位繞組匝比:
NR≤NP×(1-DMAX')/DMAX'
式中:NR/NP為復位繞組匝比,DMAX'為占空比的最大值(50%),計算NR=14。
(5)選擇第三繞組匝比(NT/NP),以使最小輸入電壓能夠在VDD處提供最小工作電壓(13V)。可采用下式計算第三繞組匝比:
NP(VDDMIN+0.7)/VIN_MIN≤NT≤NP(VDDMAX+0.7)/VIN_MAX
式中:VDDMIN是最小VDD電源電壓(13V),VDDMAX是最大VDD電源電壓(30V),VIN_MIN是最小輸入電壓(30V),VIN_MAX是最大輸入電壓(本設計為67V),NP是主繞組匝數,NT是第三繞組匝數:可選擇NT=7。
(6)根據下式選擇RSENSE:
RSENSE≤VILIM/(NS×1.2×IOUTMAX/NP)
式中:VILIM是檢流比較器的觸發門限電壓(0.465V),NS/NP是副端匝比(本例為5/14),IOUTMAX是最大直流輸出電流(本例為10A),RSENSE選90.4mΩ。
(7)選擇電感時,應使電感中的峰值紋波電流(LIR)介于最大輸出電流的10%和20%之間:
L≥(VOUT+VD)(1-DMIN)/(2LIR×275kHz×IOUTMAX)
1.1意境的追求
中國古典園林的發展在一定程度上起源于文人墨客及士大夫階層對于世事的感悟與態度,避世及享樂的意識促使這2個階層熱衷于構筑“不出世既賞世”的園林形式。階層的態度導致其意識領域的開放,使其十分重視意境及韻味,對詩畫意境的追求也體現在造園態度上,追求“多方勝境,咫尺山林”般的境界。中國文人畫作的特點在于寫意,與西方寫實相比,更多地表達了一種超脫原貌的精神,這種“開高軒以臨山,列綺窗而瞰江”的情懷在園林中的體現,成為了中國園林的特點——源于自然,高于自然,雖由人作,宛自天開。通過各種身心的感受營造整體環境,來更進一步感受這種自然之美,如拙政園中的留聽閣(取意留得殘荷聽雨聲)和聽雨軒(取意雨打芭蕉),留園中的雪香云蔚亭(來源于味覺的感受)等。
1.2形式的表達
中國古典園林的一大魅力在于其獨立性及不可復制性,留存至今的不論是皇家園林還是私家園林都有其各自的特點,根據造園的目的、造園人的心性及造園立意的不同,各自擁有獨一無二的風格特色。如網師園精巧幽深、典雅隱逸的宋代園林;拙政園平淡疏朗、曠遠明瑟的明代風格;留園布置精巧、奇石眾多的清代風格。
1.3空間的利用
園林中的不同空間布局與利用呈現出園林之間迥然不同的風格。如同借由空間的豐富組成形式,在園林整體環境構成中產生引導的作用,廊的運用常具有明顯的引導意味,將人們引致某個特定景物的所在地。又如利用地形的起伏,在整體垂直立面空間中增強韻律感,亭、廊和榭在立面空間中此起彼伏,再利用建筑本身的輪廓線造成水平面上視覺的疊加,極富變化容易留下深刻的印象。再者景物虛與實使得空間滲透效果十分顯著。利用障景、漏景,隔景等手段進行分隔空間的處理,在分隔的同時又使其相互連接和滲透。在密集的景物中產生豐富的變化,曲折幽深卻又不顯閉塞。
2古典園林建筑類型
隨著園林的逐漸發展興起,人們對于建筑的要求已經不僅僅局限于住房,在這樣的形式下產生了類型豐富的建筑,如堂、廳、樓、閣、館、軒、齋、榭、舫、亭、廊、橋等。人們賦予了每一種建筑形式不同的內容加以區分各自的功能。例如,堂,一般是一家之長的居住地,也可作為家庭舉行慶典的場所;樓,一般用作臥室、書房或用來觀賞風景,本身也可作一景;榭,一般都是在水邊筑平臺,用以觀賞為主,又可作休息的場所;亭,體積小巧,造型別致,供人休息、避雨。屋頂的形式多變、類型豐富是古典園林建筑的一大特色,各種屋頂運用不同,表現的效果也不同。例如,廡殿頂因其造型大氣和裝飾精巧多見于皇家及寺觀園林;歇山頂因其屋脊靈巧富于變化在園林建筑中最為常見;硬山頂樣式簡單,是人字形屋頂的一種;懸山頂形式較為多變,也是人字形屋頂的一種;卷棚頂線條較為平緩,緩和建筑的聳立感;攢尖頂因其靈活輕巧多用于體量較小的建筑,平面形式多樣。在這些屋頂形式的基礎上,造園者又在屋頂上加蓋一層,形成重檐,較于單檐屋頂更顯莊重大氣,二者的組合搭配提升了建筑的可觀性。
3現代園林中對古典元素的運用
現今的園林建設涵蓋的范圍越來越廣,但不論在哪種形式的園林形式中,古典園林的應用已經成為不可或缺的一部分。住宅區、公園及街道綠化中,幾乎都可以看到其中包含的中國古典園林元素,如仿古建的亭臺、牌坊等,但在這些古典元素的運用中很大一部分沒有美感和協調感。
3.1“疏忽”的意境
中國古典園林對于國人的吸引力在于古人的風骨情操和對意境的追求,園林不僅僅是庭院和建筑,更是一種處世的態度和對情感的抒發。現代園林中的古典園林要素僅留于表面形式,疏于空間格局規劃布置,遺漏園林建筑的的構造技藝。造園者的意圖已經不再以景喻情、思境相偕,更多的是迎合實際住宿和游玩的美觀需求。這種本因精神與自然欲求而產生的古典園林,現在已經僅僅成為人們對古人安逸生活的猜測和向往,在現代園林中的出現也只是一種祭奠和懷念。
3.2“變形”的建筑
國外設施園藝發展的特點
1工業技術植入園藝作物生產,實現了設施園藝生產的自動化
工業技術植入園藝作物生產之中,使設施園藝賦予了工廠化農業的內涵,成為工業化大體系不可分割的部分。溫室生產的高投入、高產出、高效率管理模式要求應用大量的高新技術,當前工業領域內的科技成果(如機器人技術等)不斷運用于溫室園藝配套裝備之中,已取得初步成果。國外發達國家一直致力于把自動化技術應用于園藝作物的耕種、施肥、灌溉、病蟲害防治、收獲以及農產品加工、儲藏、保鮮的全過程,可以根據作物生長發育的特點,創造最適宜的溫室環境條件,基本擺脫了外界環境條件對作物生產的影響,實現了作物周年生產和均衡上市。目前,這種自動控制技術逐步向智能化、網絡化方向發展[31]。20世紀70年代以來,發達國家的設施園藝已具備了設施設備完善、生產技術規范、產量穩定和產品質量安全性強等特點,并且已形成了溫室制造、生產資料配套、產品生產、物流等為一體的設施園藝產業體系。目前,日本、美國、荷蘭、以色列、韓國、英國開發出的耕耘、移栽、施肥、噴藥、蔬菜嫁接、蔬菜水果采摘、育苗移栽、苗盤覆土消毒等機器人裝備相對比較成熟,可用于設施園藝生產。溫室園藝機器人的使用,不僅大幅提高勞動生產率,改善設施生產勞動環境,而且保證了作業的一致性和均一性[32]。日本、韓國等國研究開發了多種設施園藝耕作機具、播種育苗裝備、灌水施肥裝備以及自動嫁接裝備等,提高了溫室管理水平和勞動生產率;荷蘭研制溫室屋面清洗機械裝置,用于清洗屋面灰塵,大幅度提高了溫室的透光率[33-34]。另外,荷蘭還開發出自動通風窗開閉、溫濕度調節裝置,被越來越多的溫室采用。發達國家在設施園藝產品的采收和后加工過程中,廣泛使用包裝機具、高效運輸裝置、盆花轉運機械、快速分級系統等設備,提高了園藝農產品的商品性,如荷蘭采運、包裝設備能同時實現10~20個不同花卉品種的自動分類,X射線可用于分辨盆花莖干的長度和葉色[35]。
2高新技術在設施園藝中的應用,推動了設施園藝向“植物工廠”方向發展
無土栽培、計算機技術、生物技術、產品采后處理、新能源利用等高新技術在設施園藝中的應用,使設施園藝逐步向“植物工廠”方向發展。在美國、日本、英國、奧地利、丹麥等國都建有高度自動化的“植物工廠”,可用來生產蔬菜、花卉和果樹,并且一些高附加值的作物如香料、工業原料植物、藥用植物、食用菌等也采用“植物工廠”進行生產。目前,“植物工廠”主要用于生菜、菠菜、萵苣、三葉芹、番茄等蔬菜作物的生產,由于充分利用空間,實現立體多層種植,單位面積的栽培效率可提高數倍。如日本在“植物工廠”內利用無土栽培技術和環境自動調控技術,一年內可多茬栽培生菜和菠菜,收獲期比露地縮短一半時間,產量可達180kg•m-2左右,為露地栽培的30倍以上[26]。此外,隨著人類對太空探索的日益增多,太空農業成為研究的熱點,美國宇航局(NASA)在國際空間站上探索“植物工廠”技術,目前已在綠豆、菜豆和馬鈴薯等作物上獲得了成功。
3無土栽培技術的應用使設施園藝發生了巨大變革
20世紀20年代末,無土栽培技術開始應用于設施作物生產,使設施栽培技術產生了一次大的變革。無土栽培打破了作物生產的空間和地域限制,可以在不適合作物生長的荒漠戈壁、灘涂地、海島、鹽堿地、高寒地、陽臺屋頂甚至太空進行作物生產;無土栽培改變了設施栽培的傳統種植方式,采用營養液或有機基質進行作物生產,可以有效避免設施土壤連作障礙,生產出清潔安全的園藝產品,并且具有省水、省肥、省工等優勢,從而成為栽培學領域飛速發展的一門新技術;無土栽培可加速作物生長,提高產量和品質,一般果菜類蔬菜水培的產量為土壤栽培的數倍甚至數十倍,如番茄營養液栽培年產量最高的可達到75kg•m-2,極大提高了園藝作物的生產效率。20世紀70年代初,美國已有400hm2溫室采用無土栽培技術生產黃瓜、番茄等。目前,在發達國家的設施園藝生產中,無土栽培占溫室總面積的比例荷蘭超過70%,加拿大超過50%,比利時達50%,美、日、英、法等國的無土栽培面積達到250~400hm2[36-37]。歐共體明確規定,所有歐共體國家溫室作物生產要全部實現無土栽培。
4節能、環保的理念貫穿于設施園藝生產之中
設施園藝是一種高能源消耗、高成本投入、高效率產出的生產方式,其中溫室的能源消耗占運行成本的比例較高,減少能耗、提高能源利用效率是設施園藝發達國家開展節能工作的普遍做法。隨著能源危機的不斷加劇,節能設備已成為溫室裝備研究和開發的熱點之一,而人工補光裝置是溫室耗能最多的設備之一。日本、荷蘭、美國等積極探索溫室新型補光光源LED的研究。LED冷光源在滿足作物光合作用需求的條件下,與傳統鈉燈相比具有高光效、長壽等特點,節省能耗達50%以上[38-39]。近年來,由于中東局勢不穩定導致能源緊張、CO2排放的限制以及《京都議定書》的執行等原因,歐美發達國家已將節能技術作為溫室領域最重要的研究課題。目前在設施園藝節能新材料、新技術和新能源的研究中,主要傾向于對太陽能和儲熱材料的有效利用。其中,溫室相變儲熱技術就是最具發展前景的節能技術之一[40],美國和日本等國使用氯化鈣、硫酸鈉、聚乙二醇和石蠟等相變材料作為墻體儲熱、地下儲熱和室內外聯合儲熱系統,試驗證明是可行的儲熱方法,但其工藝和儲放熱效率等尚需進一步改進[41-42]。一些國家利用淺層地熱,在夏季通過把低溫冷水源抽到地上,用于溫室降溫,經過熱交換的熱量回流到地下,冬季把高溫熱水源抽上來,只需要稍微加溫就可以用于溫室增溫[43]。另外,通過對溫室覆蓋材料內側進行鍍膜處理,能夠有效阻止長波向室外輻射,減少了熱損耗,可以實現節能25%以上。在多余能量回收和利用方面,荷蘭瓦赫寧根大學通過覆蓋多層光譜選擇性吸收的金屬材料(SOL-MOXHilite,荷蘭)和絕緣塑料薄膜(Ebiral,美國),研制成一種高效降溫-高品位能量產生組合系統,并應用于生產[44]。該技術在高溫季節,可以反射作物光合作用不需要的近紅外光(NIR),減輕溫室的高熱負荷,而收集反射的能量直接或間接地轉化成電能,用于溫室降溫的能耗;荷蘭溫室通過在玻璃表面噴灑白色涂層,減少夏季進入溫室的太陽輻射量,達到降溫目的;通過改進溫室通風窗口的數量、尺寸、傳動方式以及開啟的角度也能夠使溫室達到較理想的降溫效果。發達國家在發展設施園藝過程中,把保護環境作為前提條件。進入21世紀,隨著人們對生態環境保護和食品安全的日益關注,歐美發達國家在探索溫室能源高效利用、生態環境保護等方面進行了大量的研究工作,研制開發出一系列適合于溫室安全生產的環境友好型新技術。營養液無土栽培技術在現代溫室生產中被廣泛使用,然而,大量營養液的廢棄給環境帶來巨大的壓力。歐盟普遍采用營養液閉路循環系統,通過對營養液的回收、過濾、消毒等措施,實現節水21%、節肥34%,提高營養液利用效率,同時大幅度地減少營養液外排污染水源和土壤。在溫室病蟲害防治方面,開展以生物防治、生態防治和物理防治相結合的綜合防治技術的研究與應用[45]。目前,荷蘭在溫室生物和生態防治綜合利用方面處于世界領先地位,如Koppert公司通過釋放天敵昆蟲,能夠對設施蔬菜主要害蟲達到良好的防治效果,如粉虱天敵漿角蚜、斑潛蠅天敵潛蠅姬小蜂、蚜蟲天敵食蚜癭蚊[46],目前這些害蟲的天敵已基本實現了商品化。為了提高溫室番茄、甜椒等蔬菜作物的質量,禁止使用化學生長激素,荷蘭研制馴化出取代傳統振蕩授粉的雄蜂授粉,這種授粉方式效率高,并且能使作物產量提高20%左右。以色列開發出太陽能殺滅溫室土壤病蟲害新技術,把灌溉系統安置在翻耕的土壤中,鋪上一層薄薄的透明塑料膜,經過夏季高溫處理,可殺死地表30cm土壤層中90%~100%的細菌、真菌以及線形蠕蟲等。統計分析表明,太陽消毒法可提高設施番茄、洋蔥、土豆等農作物產量25%~432%。在新型栽培基質開發利用方面,加拿大、以色列、英國等國研制出替代草炭、巖棉的無土栽培生態型基質,形成與其相配套的設施蔬菜低碳栽培技術體系[47]。目前,低成本、環保型無土栽培基質研發已取得重大進展,并逐步走向產業化、商品化。
5信息化技術和計算機技術應用于設施園藝作物周年生產之中
隨著微型計算機、傳感器及單片機技術的運用,溫室環境控制智能化、網絡化管理技術得到較快的發展。設施園藝發達國家研發作物自動化生產管理和環境智能化控制體系,從育苗、定植、栽培、施肥、灌溉等過程全部實現自動化運作,溫室環境如溫度、光照、濕度、水分、營養、CO2濃度等綜合環境因子全部實現計算機智能監控。隨著無線網絡技術的應用,溫室網絡化管理技術也得到了較快的發展。美國、日本、荷蘭研發出一種基于控制器局域網總線(CAN)和無線傳感器網絡(WSN)的控制系統,能夠對溫室內空氣溫濕度、土壤溫濕度以及光照等參數進行自動采集,同時控制風機、暖氣、水泵等溫室環境調控設備,使溫室環境達到農作物生長的最佳環境[48]。通過研究溫室作物生長發育與環境、營養之間的定量關系,建立作物生長發育信息化模型,開發出適合不同作物生長發育的溫室控制、咨詢及管理專家系統。以色列和荷蘭開發出番茄和黃瓜等蔬菜作物生育模型和專家系統,包括適用于整枝方式、栽培密度、針對天氣和植株生育狀況的環境指標、不同生育階段的水肥指標、病蟲害預防和控制技術等。荷蘭瓦赫寧根大學通過將作物管理模型與環境控制模型相結合,實現溫室環境的智能化管理,大幅度降低了溫室系統能耗和運行成本。日本千葉大學利用遙感遙測、人工神經網絡、遺傳算法、模糊控制策略等智能控制技術,對農產品從產地生長、采收驗收、加工、自檢自控等所有過程的數據、信息、圖像都實現了信息化管理[49]。
6注重溫室作物專用品種的選育及其配套技術的研發
現代農業競爭的核心是品種,重視溫室栽培作物專用品種的選育是設施園藝發達國家保持溫室產業世界競爭力的重要手段。這些國家在搜集保存本國種質資源的同時,還十分重視國外種質資源的搜集、交換和引進,如以色列通過搜集和引進國外花卉、蔬菜、果樹品種在設施內進行微咸水灌溉,通過遺傳改良、馴化,培育出適合于本國溫室生產的專有設施園藝品種。近年來,設施園藝發達國家越來越關注設施作物新品種的外觀品質、營養品質、耐貯運等性狀的選育,如以色列選育出一種根據客戶對體積和色澤要求的無籽西瓜新品種;荷蘭種苗公司開發出一些富含鈣質、維生素且熱量低的“減肥蔬菜”,高氨基酸含量的“營養蔬菜”,具有觀賞價值的“花卉蔬菜”等新品種。一些生物技術被廣泛用于溫室作物新品種的選育,包括細胞組織培養、體細胞雜交、原生質體融合、遺傳標記、轉基因等技術,在茄子、番茄、甜椒、黃瓜及葉用萵苣等蔬菜作物上培育出一大批優良品種,如德國馬普育種研究所將人工合成的吲哚基醋酸基因轉入茄子,使冬種茄子與夏種的一樣優質;荷蘭育成的抗蟲蔬菜品種可以大幅度減少蔬菜生產中農藥的使用量,既降低了蔬菜產品農藥的殘留,也降低了蔬菜生產的成本。此外,在開發和選育設施作物新品種的基礎上,歐美發達國家非常注重溫室新品種配套栽培技術的研究和開發,選育的新品種普遍采用工廠化育苗體系、高效安全生產技術體系和無土栽培技術,利用高新技術使環境因子與栽培模式的規范完美結合,為作物生長提供最佳的環境,保證高產、穩產[50-51]。
國外設施園藝發展趨勢分析
1設施環境調控自動化與設施園藝作業機械化程度不斷提高
發達國家從事農業人員較少,加上勞動力成本較高,設施園藝生產中非常注重管理水平和勞動生產率的提高,從溫室耕作、作物栽培、生長管理、產品采收、包裝和運輸等過程全部實現機械化控制,溫室內溫度、光照、濕度等環境調節全部由計算機監控和自動化調控。隨著工業技術的不斷發展,機器人技術將會廣泛應用于設施園藝的生產,實現溫室作業精確、高效及省力化。
2溫室日趨大型化,環境調控趨于智能化
大型溫室設施具有投資省、土地利用率高、便于實行機械化自動管理、實現產業化規模生產、室內環境相對穩定的優點,因此,設施園藝發達的國家如荷蘭、加拿大等溫室逐漸向大型化方向發展;溫室園藝的核心是能夠對設施內栽培環境進行有效地控制,創造出適于作物生育的最佳環境條件,因此,未來的人工智能控制系統不僅要做到栽培環境全自動控制,還要與市場、氣象站、種苗公司、病蟲害測報等相連接,進行產量、產值的預測,為生產者提供更為廣泛的信息情報和確切的決策依據。
3設施作物品種更加豐富,市場服務體系更加完善
愈發重視設施作物專用品種的選育,為設施園藝生產提供專用的耐低溫、高溫、弱光、高濕,具有多種抗性、優質高產的種苗。種苗公司作為品種選育的主體,在種質資源、育苗設備方面具有強大的優勢,能夠依據市場需求開發設施栽培所需專用品種,并對設施園藝產前、產中、產后提供技術支持和市場信息化服務。
4無土栽培成為現代設施園藝的主要栽培形式
無土栽培技術具有諸多方面的優點,目前全球已有100多個國家將無土栽培技術用于溫室生產品質優、商品性好、安全、綠色的園藝產品。隨著未來人口數量的不斷增長、可耕地面積的日益銳減,無土栽培技術在提高作物產量、拓展土地利用空間以及保護自然生態環境方面具有廣闊的應用前景,在設施園藝、觀光農業、家庭園藝、植物工廠和太空農業領域也將會擁有廣闊的發展前景。
1.1不重視機電設備管理
醫院后勤部門還不夠重視機電設備的管理,沒有形成一套健全的管理體系,而且機電設備也沒有配備專人管理和維護。從目前的情況看,大部分醫院的機電設備都是由電工或兼職人員管理的,由于他們缺乏專業的教育培訓,缺乏對機電設備安全的重視,所以,在工作中,經常憑借自己的主觀想法進行管理和維護。現階段,設備管理還處于初級階段,只有設備出現故障停止工作時才修理,并沒有意識到機電設備存在的潛在危險。這都是管理不到位造成的。
1.2機電設備的維修不科學
當前,醫院后勤機電設備的維修還不夠科學,機電設備管理比較粗放。在機電設備管理過程中,過度重視設備的使用,而忽視了設備的維修。在使用過程中,為了完成醫院各部門的任務,機電設備往往超負荷工作,使得很多小故障被忽視,不能及時解決,而很多機電設備最后甚至完全停止運轉。這樣,不僅給維修人員增加了維修難度,還會大大增加維修成本。此外,醫院后勤機電設備的檢測技術和儀器比較落后,影響了維修的質量。
1.3醫院后勤人員素質能力不高
醫院后勤的機電設備主要有供電、供水、空調、消防和電梯等。維修這些機電設備的工作人員缺乏相關的機電專業知識,而且實踐經驗比較少,所以,在維修機電設備時,很容易出現違規操作的問題。此外,醫院大部分專業化機電設備都是由專門的銷售商或生產商維修的,當機電設備發生故障后,維修人員無法及時維修,嚴重影響了機電設備的正常運行。
2應對策略
2.1提高重視程度
醫院后勤應提高對機電設備管理的重視程度,正確認識機電設備管理對醫院正常運行所起的重要作用。要采用先進的管理理念和方法,有效地提高機電設備的管理效果,利用較少的人力、物力、財力實現更大的經濟效益。在傳統的機電設備管理中,醫院后勤部門過度重視技術管理,而忽視了經濟上的管理。因此,醫院后勤部門應將技術管理與經濟管理相統一,進而實現動態管理,以提高機電設備的利用率。同時,還要更新管理觀念,實現全員參與,從而更好地實現機電設備管理。
2.2完善機電設備的管理制度
要加強醫院后勤機電設備的管理,就必須要有完善的管理制度作保障,建立完善的管理制度,定期維護和保養機電設備,嚴格按照制度開展工作。在維修和保養時,應突出科學性和預見性,做好防范工作。完善機電設備管理體系,隨時掌握機電設備的運行情況,做好機電設備的安全、測試、使用、保養和維修等環節的檔案記錄和管理工作,為機電設備的后續維修和保養提供全面的資料和數據。在重點處理和檢測重點部位時,完善的機電設備管理制度可以提高維修質量和效率,保證機電設備的正常運行,優化管理流程,更好地完成工作。
2.3提高后勤管理人員的素質、能力
隨著醫院后勤機電設備自動化和集約化程度的不斷提高,對醫院機電管理人員的素質、能力也提出了更高的要求。鑒于此,醫院需要加強后勤管理人員的素質、能力培訓和教育,打造一支高素質的管理團隊,保證后勤機電設備可以高效、正常地運轉。同時,在管理人員中開展機電設備管理知識教育,提高安全管理意識,讓后勤管理人員意識到加強機電設備的安全管理對自己、醫院、患者等生命安全有至關重要的影響。所以,要加強機電設備管理教學工作,樹立全新的管理理念,不斷完善激勵機制,提高機電設備管理人員工作的積極性,加強思想道德教育,提高他們的工作責任感,保證機電設備管理工作高效、穩定地進行。
2.4提高對管理制度的執行力度
醫院后勤人員應加強機電設備的運行巡視工作,消防部門和機電設備部門應每天巡視,檢查醫院的供水、供電、消防和報警設備,發現問題及時處理,不能獨立處理的及時上報。在日常工作中,應有效劃分各個設備機房的管理責任,分工執行,對機電的主管人員實行月考核,嚴格按照計劃完成機電設備的日常編碼、維修和保養等工作,合理清潔機電設備,保證設備的完好度,排除安全隱患。同時,還要進行日常緊固、等工作,及時更換已經損壞的部件。另外,要成立安全應急小組,時刻警惕,做出迅速的反應,對日常機電設備進行安全故障排查,對出現問題的機電設備進行救護和緊急處理,保證機電設備的正常運行。
2.5科學化的管理方式
近年來,醫院的規模不斷擴大,使用的機電設備也逐漸增多,對機電設備的管理和維護要求也越來越高,因此,需要采用先進的、科學化的管理方式管理機電設備。醫院后勤部門在選擇、驗收、安裝機電設備時,應選擇高素質、愿意從事機電設備管理人員參與到其中。在銷售商和生產商維修的基礎上,在醫院儲備一些機電設備部件,以備不時之需。
3結束語