1000部丰满熟女富婆视频,托着奶头喂男人吃奶,厨房挺进朋友人妻,成 人 免费 黄 色 网站无毒下载

首頁 > 文章中心 > 卷積神經網絡情感分析

卷積神經網絡情感分析

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇卷積神經網絡情感分析范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

卷積神經網絡情感分析

卷積神經網絡情感分析范文第1篇

關鍵詞:人工智能 機器學習 機器人情感獲得 發展綜述

中圖分類號:TP18 文獻標識碼:A 文章編號:1003-9082 (2017) 04-0234-01

引言

人類自從工業革命結束之后,就已然開始了對人工智能的探索,究其本質,實際上就是對人的思維進行模仿,以此代替人類工作。人工智能的探索最早可以追溯到圖靈時期,那時圖靈就希望未來的智能系統能夠像人一樣思考。在20世紀五十年代,人工智能被首次確定為一個新興的學科,并吸引了大批的學者投入到該領域的研究當中。經過長時間的探索和嘗試,人工智能的許多重要基本理論已經形成,如模式識別、特征表示與推理、機器學習的相關理論和算法等等。進入二十一世紀以來,隨著深度學習與卷積神經網絡的發展,人工智能再一次成為研究熱點。人工智能技術與基因過程、納米科學并列為二十一世紀的三大尖端技術, 并且人工智能涉及的學科多,社會應用廣泛,對其原理和本質的理解也更為復雜。 一、人工智能的發展歷程

回顧人工智能的產生與發展過程 ,可以將其分為:初期形成階段,綜合發展階段和應用階段。

1.初期形成階段

人工智能這一思想最早的提出是基于對人腦神經元模型的抽象。其早期工作被認為是由美國的神經學家和控制論學者 Warren McCulloch與Walter Pitts共同完成的。在1951年,兩名普林斯頓大學的研究生制造出了第一臺人工神經元計算機。而其真正作為一個新的概念被提出是在1956年舉行的達茅斯會議上。由麥卡錫提議并正式采用了“人工智能”(Artificial Intelligence)礱枋穌庖謊芯咳綰斡沒器來模擬人類智能的新興學科。1969年的國際人工智能聯合會議標志著人工智能得到了國際的認可。至此,人工智能這一概念初步形成,也逐漸吸引了從事數學、生物、計算機、神經科學等相關學科的學者參與該領域的研究。

2.綜合發展階段

1.7 7年, 費根鮑姆在第五屆國際人工智能聯合會議上正式提出了“知識工程”這一概念。而后其對應的專家系統得到發展,許多智能系統紛紛被推出,并應用到了人類生活的方方面面。20世紀80年代以來,專家系統逐步向多技術、多方法的綜合集成與多學科、多領域的綜合應用型發展。大型專家系統開發采用了多種人工智能語言、多種知識表示方法、多種推理機制和多種控制策略相結合的方式, 并開始運用各種專家系統外殼、專家系統開發工具和專家系統開發環境等等。在專家系統的發展過程中,人工智能得到了較為系統和全面的綜合發展,并能夠在一些具體的任務中接近甚至超過人類專家的水平。

3.應用階段

進入二十一世紀以后,由于深度人工神經網絡的提出,并在圖像分類與識別的任務上遠遠超過了傳統的方法,人工智能掀起了前所未有的。2006年,由加拿大多倫多大學的Geoffery Hinton及其學生在《Science》雜志上發表文章,其中首次提到了深度學習這一思想,實現對數據的分級表達,降低了經典神經網絡的訓練難度。并隨后提出了如深度卷積神經網絡(Convolutional Neural Network, CNN),以及區域卷積神經網絡(Region-based Convolutional Neural Network, R-CNN),等等新的網絡訓練結構,使得訓練和測試的效率得到大幅提升,識別準確率也顯著提高。

二、人工智能核心技術

人工智能由于其涉及的領域較多,內容復雜,因此在不同的應用場景涉及到許多核心技術,這其中如專家系統、機器學習、模式識別、人工神經網絡等是最重要也是發展較為完善的幾個核心技術。

1.專家系統

專家系統是一類具有專門知識和經驗的計算機智能程序系統,通過對人類專家的問題求解能力建模,采用人工智能中的知識表示和知識推理技術來模擬通常由專家才能解決的復雜問題,達到具有與專家同等解決問題能力的水平。對專家系統的研究,是人工智能中開展得較為全面、系統且已經取得廣泛應用的技術。許多成熟而先進的專家系統已經被應用在如醫療診斷、地質勘測、文化教育等方面。

2.機器學習

機器學習是一個讓計算機在非精確編程下進行活動的科學,也就是機器自己獲取知識。起初,機器學習被大量應用在圖像識別等學習任務中,后來,機器學習不再限于識別字符、圖像中的某個目標,而是將其應用到機器人、基因數據的分析甚至是金融市場的預測中。在機器學習的發展過程中,先后誕生了如凸優化、核方法、支持向量機、Boosting算法等等一系列經典的機器學習方法和理論。機器學習也是人工智能研究中最為重要的核心方向。

3.模式識別

模式識別是研究如何使機器具有感知能力 ,主要研究圖像和語音等的識別。其經典算法包括如k-means,主成分分析(PCA),貝葉斯分類器等等。在日常生活各方面以及軍事上都有廣大的用途。近年來迅速發展起來應用模糊數學模式、人工神經網絡模式的方法逐漸取代傳統的基于統計學習的識別方法。圖形識別方面例如識別各種印刷體和某些手寫體文字,識別指紋、癌細胞等技術已經進入實際應用。語音識別主要研究各種語音信號的分類,和自然語言理解等等。模式識別技術是人工智能的一大應用領域,其非常熱門的如人臉識別、手勢識別等等對人們的生活有著十分直接的影響。

4.人工神經網絡

人工神經網絡是在研究人腦的結構中得到啟發, 試圖用大量的處理單元模仿人腦神經系統工程結構和工作機理。而近年來發展的深度卷積神經網絡(Convolutional neural networks, CNNs)具有更復雜的網絡結構,與經典的機器學習算法相比在大數據的訓練下有著更強的特征學習和表達能力。含有多個隱含層的神經網絡能夠對輸入原始數據有更抽象喝更本質的表述,從而有利于解決特征可視化以及分類問題。另外,通過實現“逐層初始化”這一方法,實現對輸入數據的分級表達,可以有效降低神經網絡的訓練難度。目前的神經網絡在圖像識別任務中取得了十分明顯的進展,基于CNN的圖像識別技術也一直是學術界與工業界一致追捧的熱點。

三、機器人情感獲得

1.智能C器人現狀

目前智能機器人的研究還主要基于智能控制技術,通過預先定義好的機器人行動規則,編程實現復雜的自動控制,完成機器人的移動過程。而人類進行動作、行為的學習主要是通過模仿及與環境的交互。從這個意義上說,目前智能機器人還不具有類腦的多模態感知及基于感知信息的類腦自主決策能力。在運動機制方面,目前幾乎所有的智能機器人都不具備類人的外周神經系統,其靈活性和自適應性與人類運動系統還具有較大差距。

2.機器人情感獲得的可能性

人腦是在與外界永不停息的交互中,在高度發達的神經系統的處理下獲得情感。智能機器人在不斷的機器學習和大數據處理中,中樞處理系統不斷地自我更新、升級,便具備了獲得情感的可能性及幾率。不斷地更新、升級的過程類似于生物的進化歷程,也就是說,智能機器人有充分的可能性獲得與人類同等豐富的情感世界。

3.機器人獲得情感的利弊

機器人獲得情感在理論可行的情況下,伴之而來的利弊則眾說紛紜。一方面,擁有豐富情感世界的機器人可以帶來更多人性化的服務,人機合作也可進行地更加深入,可以為人類帶來更為逼真的體驗和享受。人類或可與智能機器人攜手共創一個和諧世界。但是另一方面,在機器人獲得情感時,機器人是否能徹底貫徹人類命令及協議的擔憂也迎面而來。

4.規避機器人情感獲得的風險

規避智能機器人獲得情感的風險應預備強制措施。首先要設計完備的智能機器人情感協議,將威脅泯滅于未然。其次,應控制智能機器人的能源獲得,以限制其自主活動的能力,杜絕其建立獨立體系的可能。最后,要掌控核心武器,必要時強行停止運行、回收、甚至銷毀智能機器人。

三、總結

本文梳理了人工智能的發展歷程與核心技術,可以毋庸置疑地說,人工智能具有極其廣闊的應用前景,但也伴隨著極大的風險。回顧其發展歷程,我們有理由充分相信,在未來人工智能的技術會不斷完善,難題會被攻克。作為世界上最熱門的領域之一,在合理有效規避其風險的同時,獲得情感的智能機器人會造福人類,并極大地幫助人們的社會生活。

參考文獻

[1]韓曄彤.人工智能技術發展及應用研究綜述[J].電子制作,2016,(12):95.

[2]曾毅,劉成林,譚鐵牛.類腦智能研究的回顧與展望[J].計算機學報,2016,(01):212-222.

[3]張越.人工智能綜述:讓機器像人類一樣思考

卷積神經網絡情感分析范文第2篇

關鍵詞:AlphaGo;人工智能;圍棋;未來展望

中圖分類號:TP18 文獻標識碼:A 文章編號:1671-2064(2017)07-0193-02

1 圍棋與人工智能

圍棋作為中國傳統四大藝術之一,擁有著幾千年的悠久歷史。圍棋棋盤由19條橫線和19條豎線組成,共有19*19=361個交叉點,圍棋子分為黑白兩種顏色,對弈雙方各執一色,輪流將一枚棋子下在縱橫交叉點上,終局時,棋子圍上交叉點數目最多的一方獲勝。圍棋棋盤上每一個縱橫交叉點都有三種可能性:落黑子、落白子、留空,所以圍棋擁有高達3^361種局面;圍棋的每個回合有250種可能,一盤棋可長達150回合,所以圍棋的計算復雜度為250^150,約為10^170,然而全宇宙可觀測的原子數量只有10^80,這足以體現圍棋博弈的復雜性和多變性。

人工智能(Artificial Intelligence,AI)主要研究人類思維、行動中那些尚未算法化的功能行為,使機器像人的大腦一樣思考、行動。長期以來,圍棋作為一種智力博弈游戲,以其變化莫測的博弈局面,高度體現了人類的智慧,為人工智能研究提供了一個很好的測試平臺,圍棋人工智能也是人工智能領域的一個重要挑戰。

傳統的計算機下棋程序的基本原理,是通過有限步數的搜索樹,即采用數學和邏輯推理方法,把每一種可能的路徑都走一遍,從中選舉出最優路徑,使得棋局勝算最大。這種下棋思路是充分發揮計算機運算速度快、運算量大等優勢的“暴力搜索法”,是人類在對弈規定的時間限制內無法做到的。但是由于圍棋局面數量太大,這樣的運算量對于計算機來講也是相當之大,目前的計算機硬件無法在對弈規定的時間內,使用計算機占絕對優勢的“暴力搜索法”完成圍棋所有局面的擇優,所以這樣的下棋思路不適用于圍棋對弈。

搜索量巨大的問題一直困擾著圍棋人工智能,使其發展停滯不前,直到2006年, 蒙特卡羅樹搜索的應用出現,才使得圍棋人工智能進入了嶄新的階段,現代圍棋人工智能的主要算法是基于蒙特卡洛樹的優化搜索。

2 圍棋人工智能基本原理

目前圍棋人工智能最杰出的代表,是由谷歌旗下人工智能公司DeepMind創造的AlphaGo圍棋人工智能系統。它在與人類頂級圍棋棋手的對弈中充分發揮了其搜索和計算的優勢,幾乎在圍棋界立于不敗之地。

AlphaGo系統的基本原理是將深度強化學習方法與蒙特卡洛樹搜索結合,使用有監督學習策略網絡和價值網絡,極大減少了搜索空間,即在搜索過程中的計算量,提高了對棋局估計的準確度。

2.1 深度強化學習方法

深度學習源于人工神經網絡的研究,人類大量的視覺聽覺信號的感知處理都是下意識的,是基于大腦皮層神經網絡的學習方法,通過模擬大腦皮層推斷分析數據的復雜層狀網絡結構,使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象,其過程類似于人們識別物體標注圖片。現如今,應用最廣泛的深度學習模型包括:卷積神經網絡、深度置信網絡、堆棧自編碼網絡和遞歸神經網絡等。

強化學習源于動物學習、參數擾動自適應控制等理論,通過模擬生物對環境以試錯的方式進行交互達到對環境的最優適應的方式,通過不斷地反復試驗,將變化無常的動態情況與對應動作相匹配。強化學習系統設置狀態、動作、狀態轉移概率和獎賞四個部分,在當前狀態下根據策略選擇動作,執行該過程并以當前轉移概率轉移到下一狀態,同時接收環境反饋回來的獎賞,最終通過調整策略來最大化累積獎賞。

深度學習具有較強的感知能力,但缺乏一定的決策能力;強化學習具有決策能力,同樣對感知問題無能為力。深度強化學習方法是將具有感知能力的深度學習和具有決策能力的強化學習結合起來,優勢互補,用深度學習進行感知,從環境中獲取目標觀測信息,提供當前環境下的狀態信息;然后用強化學習進行決策,將當前狀態映射到相應動作,基于初期匯報評判動作價值。

深度強化學習為復雜系統的感知決策問題提供了一種全新的解決思路。

2.2 蒙特卡洛樹搜索

蒙特卡洛樹搜索是將蒙特卡洛方法與樹搜索相結合形成的一種搜索方法。所謂蒙特卡洛方法是一種以概率統計理論為指導的強化學習方法,它通常解決某些隨機事件出現的概率問題,或者是某隨機變量的期望值等數字特征問題。通過與環境的交互,從所采集的樣本中學習,獲得關于決策過程的狀態、動作和獎賞的大量數據,最后計算出累積獎賞的平均值。

蒙特卡洛樹搜索算法是一種用于解決完美信息博弈(perfect information games,沒有任何信息被隱藏的游戲)的方法,主要包含選擇(Selection)、擴展(Expansion)、模擬(Simulation)和反向傳播(Backpropagation)四個步驟。

2.3 策略網絡與價值網絡

AlphaGo系統擁有基于蒙特卡洛樹搜索方法的策略網絡(Policy Network)和價值網絡(Value Network)兩個不同的神經網絡大腦,充分借鑒人類棋手的下棋模式,用策略網絡來模擬人類的“棋感”,用價值網絡來模擬人類對棋盤盤面的綜合評估。

AlphaGo系統主要采用有監督學習策略網絡,通過觀察棋盤布局,進行棋路搜索,得到下一步合法落子行動的概率分布,從中找到最優的一步落子位置,做落子選擇。DeepMind團隊使用棋圣堂圍棋服務器上3000萬個專業棋手對弈棋譜的落子數據,來預測棋手的落子情況。期間,系統進行上百萬次的對弈嘗試,進行強化學習,將每一個棋局進行到底,不斷積累“經驗”,學會贏面最大的棋路走法,最終達到頂級圍棋棋手的落子分析能力。而AlphaGo的價值網絡使用百萬次對弈中產生的棋譜,根據最終的勝負結果來進行價值網絡訓練,預測每一次落子選擇后贏棋的可能性,通過整體局面的判斷來幫助策略網絡完成落子選擇。

3 圍棋人工智能意義

經過比賽測試證明,AlphaGo系統的圍棋對弈能力已經達到世界頂級棋手水平。一直以來,圍棋因為復雜的落子選擇和巨大的搜索空間使得圍棋人工智能在人工智能領域成為一個具有代表性的難度挑戰。目前的硬件水平面對如此巨大的搜索空間顯得束手無策,AlphaGo系統基于有監督學習的策略網絡和價值網絡大大減少搜索空間,在訓練中開創性地使用深度強化學習,然后結合蒙特卡洛樹搜索方法,使得系統自學習能力大大提高,并且AlphaGo系統在與人類頂級棋手對弈中取得的連勝卓越成績,櫧湓諶斯ぶ悄芰煊虻於了堅實的里程碑地位。

雖然圍棋人工智能取得了如此優秀的成績,但是也僅僅是它在既定規則內的計算處理能力遠遠超過了人類的現有水平,并且還有有待提高和完善的地方。在人類的其他能力中,例如情感、思維、溝通等等領域,目前的人工智能水平是遠遠達不到的。但是隨著科技的進步和人類在人工智能領域的研究深入,人工智能與人類的差距會逐漸減小,像圍棋人機大戰人工智能連勝人類這樣的例子也可能在其他領域發生,這就意味著人工智能的發展前景十分可觀。

4 結語

人類和人工智能共同探索圍棋世界的大幕即將拉開,讓人類棋手結合人工智能,邁進全新人機共同學習交流的領域,進行一次新的圍棋革命,探索圍棋真理更高的境界。

參考文獻

主站蜘蛛池模板: 科尔| 曲周县| 出国| 黄大仙区| 来凤县| 三明市| 澳门| 潢川县| 丰城市| 宁津县| 景洪市| 金塔县| 岢岚县| 宜州市| 和平县| 灌阳县| 汝城县| 新丰县| 高要市| 高青县| 蓬溪县| 大足县| 开平市| 姜堰市| 龙岩市| 孟州市| 寿光市| 益阳市| 江山市| 朝阳市| 东乡| 富川| 元朗区| 永胜县| 尉氏县| 大港区| 宜宾市| 平和县| 收藏| 大余县| 定襄县|