前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇能源化學工程導論范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
化學工程與工藝。化學工程與工藝專業為廣東省名牌專業,培養從事化工生產、科學研究、產品開發、管理、營銷等工作的高級工程技術人員。本專業要求學生掌握化工生產過程的基本原理、方法、工藝和設備的特點和規律,既可在化學反應工程、傳質與分離工程等傳統化工領域從事科研和設計,又可在生物化工、環境化工、精細化工、能源化工、高分子化工等相關領域從事新工藝、新產品、新技術的研究與開發。主要課程:物理化學、流體力學與傳熱、傳質與分離工程、化工熱力學、化學反應工程、化工系統工程、精細化工、化學工藝學、生物化學工程、現代分離技術、環境工程、能源工程、新材料導論、化工商務、現代化工物流技術、化工自動控制、計算機應用等專業基礎課程和專業課程。畢業生可在基礎化工、石油化工、生物化工、輕工、冶金、能源、環境、化工物流、化工貿易等部門從事生產、設計、科研和產品開發、管理、教學、營銷等工作,也可到金融、商檢、外貿、海關、公安、政府部門等從事相關工作,或攻讀更高的學位。畢業生適應面廣,能力強,深受用人單位的歡迎,近年來一次就業率多次達到100%。
應用化學。創辦于上世紀80年代初,為國內最早創辦的應用化學專業之一,2005年被評為廣東省名牌專業。目標是培養具有較系統的化學理論基礎和實驗技能以及良好的綜合素質和創新精神,能夠進行應用化學領域的研究、開發、生產、管理的高級科技人才。要求學生在較扎實地掌握工科公共基礎、外語、計算機技能的基礎上,系統地學習化學方面的基礎知識、基本理論、基本技能以及相關的工程技術知識,受到應用基礎研究方面的科學思維和科學實驗訓練,能從事應用化學專業,尤其是精細化學品化學、工業分析,應用電化學和現代測試技術等專業方向的實際工作和研究工作。主要課程:無機化學、有機化學、分析化學、物理化學、儀器分析、流體力學與傳熱、傳質與分離工程、化工原理實驗、結構化學、分離化學、無機功能材料、無機合成、精細化學品概論、有機合成、有機分析、環境化學、工業分析、商品理化檢驗、膠體與界面化學、催化及能源化學等專業基礎課程和專業課程。畢業生可在商品檢驗、食品檢驗、環境保護、環境監測、化工安全評估、涂料、醫藥、洗滌用品、化妝品等相當廣闊的領域就業,近年來一次就業率近100%。也可以攻讀更高學位。
能源工程及自動化。本專業培養具備能源基礎理論和工程知識,能從事在石油化工、天然氣輸送及利用、電力生產及自動化、制冷與空調等傳統能源領域及太陽能、生物質能、風能等可再生及新能源領域進行研發、工程建設及運行管理工作的跨學科復合型高級人才。能源工業是國民經濟的支柱產業,廣東省是能源消耗大省,且一次能源匱乏,電力產業發展迅速,夏季時間長,空調和食品冷藏需求旺盛,液化天然氣(LNG)的引入及惠州、湛江等幾個石油化工基地的建設將使廣東能源結構發生很大的變化。本專業將為能源工程領域培養急需的高級專門人才。本專業主要學習:化工原理、工程熱力學,流體力學,傳熱學,換熱器原理與設計,制冷技術、工業催化、天然氣開采與利用、燃氣輸配、燃氣燃燒與應用、石油煉制等基礎及專 24業課程。學生將在專業學習階段分為石油化工及天然氣利用兩個模塊。畢業生可在石油煉制、天然氣輸配、電力生產、制冷空調、能源化工、可再生能源開發、高等院校等從事生產、管理、設計、營銷、教學、科研工作,也可攻讀更高學位。自2004年創辦以來,本專業畢業生供不應求,一次就業率均為100%。
制藥工程。本專業培養德、智、體全面發展,適應21世紀制藥工程發展需要,具有制藥工程專業知識,能在醫藥、農藥、生物化工、精細化工、輕工和環境保護等部門從事醫藥產品生產工藝、新藥研究與開發、醫藥企業管理、醫藥產品營銷等方面工作的高級工程技術人才和管理人才。學生主要學習有機化學、物理化學、藥物化學、藥理學、制劑學、生物化學、化工原理、制藥工藝學、制藥工程學、制藥分離技術、制藥過程控制原理與儀表、計算機應用、藥品營銷、藥事管理與法規等。畢業生可在制藥企業、醫藥公司、醫療衛生、高等院校從事生產、管理、設計、營銷、教學、科研和藥品開發工作,也可到金融、商檢、外貿、海關、公安、政府部門等從事相關工作,或攻讀更高學位。制藥工程專業涉及化學制藥、生物制藥和天然產物(包括中藥)制藥三大方向。本專業將在專業知識,創新能力和業務素質三方面對學生進行綜合素質的培養和訓練。畢業生知識面寬、適應能力強,就業前景廣闊,近年來一次就業率均為98%。
(來源:文章屋網 )
關鍵詞:新能源;新能源科學與工程;培養方案;課程體系
作者簡介:韓新月(1982-),女,河南商丘人,江蘇大學能源與動力工程學院,講師;何志霞(1976-),女,甘肅涇川人,江蘇大學能源與動力工程學院,副教授。(江蘇 鎮江 212013)
基金項目:本文系江蘇大學教學改革項目(項目編號:JGZD2009025)、江蘇省高等教育教學改革研究重中之重課題(課題編號:2011JSJG006)的研究成果。
中圖分類號:G642 文獻標識碼:A 文章編號:1007-0079(2013)05-0009-03
一、我國高校設立新能源專業的必要性
能源問題與環境問題是21世紀人類面臨的兩大基本問題,發展新能源是解決這兩大問題的必由之路。新能源是相對于常規能源而言,以采用新技術和新材料而獲得,在新技術基礎上系統地開發利用的能源,如太陽能、風能、地熱能、海洋能等。由于新能源具有再生、清潔、低碳、可持續利用等優勢,所以越來越多的國家開始重視它。而且新能源可以作為促進人類發展和保護環境的重要途徑,所以這些國家在相關政策中都增加了新能源的元素。新能源產業的發展也是未來中國可持續發展的關鍵。但是,和發達國家相比,我國新能源產業化發展起步較晚,技術相對落后,總體產業化程度不高。不過,我國天然資源非常豐富,市場需求空間很大,在政府大力發展新能源及可再生能源政策的帶動下,新能源領域成為大型能源集團、民營企業、國際資本、風險投資等諸多投資者的投資熱點,技術利用水平正逐步提高,具有較大的發展空間。“十二五”期間將是我國新能源產業從起步階段進入大規模發展的關鍵轉折時期。我國新能源在這一時期的發展總目標是:建立初步適應大規模新能源發展的電網等重大基礎設施體系,推動新能源裝備制造業的壯大和升級,促進新能源市場的不斷擴大,爭取在2015年將非化石能源在能源消費中的比重提高到12%左右。[1]
盡管國家已經把發展新能源放在一個重要的戰略位置上,一場新的能源革命已在悄然進行,它必將帶來新的經濟繁榮、新的社會理念和新的生活方式。但是,我國新能源產業發展過程中的一大難題是缺少成熟先進的新能源技術。我國主要的新能源設備和技術完全依賴進口,新能源領域的科技創新能力明顯不足。而新能源產業化進程中的這些難題有待專業人士去破解。所以,培養新能源方面的專業和復合型人才是重中之重。[2]但是,新能源產業作為一個錯綜復雜的資源環境復合體,涉及物理學、化學、流體力學、傳熱學、電子電工學、材料科學、生物學、管理學、工業經濟學等學科內容,是一個典型的多學科交叉的新興產業。[3]因此,需要設立專門的新能源專業來滿足,新能源產業對新能源人才要有寬的知識面、自主的學習能力、豐富的想象力、敏銳的洞察力以及較強的溝通協調能力等要求,進而要求高校做好優化人才培養層次、改進人才培養方案等工作。
國外已有一些著名大學建立了新能源的本科專業,用于培養太陽能、風能、生物質能等方面的科技人才,如澳大利亞的新南威爾士大學設立了專門的光伏與可再生能源工程學院,并于2000年開設了光伏與太陽能本科專業,2003年又開設了可再生能源工程本科專業;澳大利亞國立大學依托其可持續能源系統中心也建立了四年制的可再生能源系統專業。此外,意大利的都靈理工大學和米蘭理工大學都開辦了四年制的可再生能源專業。美國的俄勒岡州科技學院于2005年也建立了可再生能源四年大學本科學位課程。隨著全球能源結構的變化,對于新能源方面的人才需求不斷增加,世界上將會有更多的高校開辦有關新能源的專業。
我國高校在新能源專業設置和新能源產業專業人才培養方面還落后于發達國家。為順應時代的發展,為國家培養新能源這一新興產業的專業人才,2010年7月經教育部審批,浙江大學、中南大學、江蘇大學等11所高校首次設立新能源科學與工程專業。其中江蘇大學的新能源科學與工程本科專業由能源與動力工程學院承擔開設任務,已分別于2011年9月和2012年9月招收第一批和第二批本科生。關于新能源科學與工程專業本科生的培養方案、培養模式和培養體系則處于不斷探索和完善中。
二、 新能源科學與工程專業的培養方案
在對國內外新能源相關專業人才培養充分調研的基礎上,分析國家社會和經濟發展要求,基于新能源產業特點及企業和社會對新能源專業人才知識結構和能力結構的要求,同時結合本校自身的學科特色和優勢,確定了新能源專業人才培養方案,主要包括專業培養目標的確立及科學、合理的課程體系的設置、可行的教學計劃的制訂等。
1.培養目標
專業的培養目標是專業建設和一切教學活動的基礎、依據,也是人才培養的最終目的。新能源科學與工程專業在國內甚至在世界上都是非常新的專業,目前處于初步形成和探索階段,因此,找準本校專業人才培養定位和確立該專業人才培養的長遠目標尤為重要。江蘇大學能源與動力工程學院結合自身實際情況,依托機械工程、電氣信息工程、材料科學與工程、化學化工、土木工程等學科專業的支持,并結合新能源產業的特點設立了新能源科學與工程專業,使培養出來的學生具有良好的綜合素質和創新意識,富有社會責任感,具有國際一流的視野,具備新能源科學與工程這一強交叉學科寬厚扎實的物理、化學及熱流體科學基礎理論,系統掌握新能源科學與工程應用專業知識及技能、新能源轉換與利用原理、新能源裝置及系統運行技術,能勝任新能源技術相關的科學研究、工程設計、技術開發及技術經濟管理等工作的高級專門人才。
2.課程體系的構建
盡管自2010年以來國內陸續已有許多高校正式獲批新能源科學與工程專業在本科階段的招生資格。但總體來看,我國系統培養新能源科學與工程本科生、研究生的工作才剛剛起步,對于相應課程體系的構建也處于探索階段。一個專業所設置的課程相互間的分工與配合構成課程體系。課程體系是否合理、課程內容是否先進直接關系到培養人才的質量。而且,一個專業要具有區別于其他專業的培養方向和業務范圍,就應有自己獨立的課程體系。[4]新能源科學與工程專業是一門內容豐富而又廣泛的科學與工程,屬交叉學科。它與數學、物理、化學、生物學等緊密相關,又強烈地依托于能源與動力工程、材料、機械、電氣、化工、自控和生物工程技術的發展。由于國內在這方面的研究幾乎為空白,因此,如何以這些學科為依托,形成內容先進、結構合理的課程體系是急需解決的一項重大課題。筆者根據孫根年有關課程體系優化的思路給出了系統思考下新能源科學與工程專業課程體系的總體結構,如圖1所示。[5]
由圖1可以看出,在層次上將新能源科學與工程課程劃分為通識教育平臺課程、學科專業基礎課程、專業(方向)課程、集中實踐環節和課外實踐環節五個方面。新能源科學與工程課程體系作為一個系統,不同的課程類別在培養目標和培養規格的指導下相互作用、相互影響,共同服務于新能源科學與工程專門人才培養這一特定的功能。
3.教學組織與實施
基于新能源科學與工程專業的培養目標及課程體系結構,考慮到本地區、本學校的實際情況,筆者制定的新能源科學與工程專業的指導性教學計劃如圖2所示。
由圖2可以看出,在教學組織上前五學期主要進行普通文化課和專業技術基礎課的教學,為后續專業課程的學習打下良好基礎。同時,在第二、三、四、五學期還安排了金工實習、專業認知實習、電工電子實習和機械設計課程設計,目的是增加學生在校期間的動手操作機會。第六、七學期組織專業(方向)課程的教學和實習實訓,核心課程均采用一體化教學方式。第八學期開展畢業設計環節,從而培養學生綜合運用所學知識、結合實際獨立完成課題的工作能力。
三、 新能源科學與工程專業培養計劃的特色
1.以厚基礎、寬平臺、交叉學科為理念,強調扎實的物理、化學和熱流體科學基礎理論
課程建設時,首先在物理、化學基礎理論方面增加了“大學化學”、“物理化學”、“能源與環境化學”和“半導體物理”課程。其次,根據新能源專業的特點,強調物理、化學基礎的同時,通過減少“工程圖學”、“工程力學”和“機械原理與設計”課程的學時數來弱化機械類課程。再次,為了充分發揮本校本學院學科優勢和特點,在熱流體理論方面除了開設“流體力學”、“工程熱力學”和“傳熱學”課程外,還開設了“熱流體數值計算基礎”和“新能源利用中的熱流體理論與技術”兩門專業特色課程。目的是提升專業內涵,強化特色,確保學生具備新能源領域相關的扎實的基礎理論,是學生今后在本專業及相關領域是否具備發展潛力的關鍵所在。
2.強調實踐教學及新能源工程訓練
首先,增加了“現代分析測試技術”課程。其次,增加了實習環節的學時數,把一般安排在第六學期的三周生產實習變為第四學期末的一周認知實習和第六學期的三周生產實習。目的是增加實踐教學,先認知實習,后生產實習,使實習環節更為科學和合理。再次,還增加了項目設計,把一般安排在第七學期的兩周課程設計修訂為第六學期末的兩周課程設計和第七學期末的兩周項目設計。目的是先開展某門課程的課程設計,后進行具體的項目設計,設置更為科學和合理。通過指導學生開展設計性、綜合性項目設計,培養學生發現問題、解決問題的創新能力。此外,還增加了新能源工程訓練環節,在此環節中學生和指導老師雙向選擇后,學生參與到老師的科研項目中。指導老師在與國內外新能源企業合作中,向學生提供不同類型的專業實踐機會。這個環節是在第七學期前完成,設置此環節的目的是培養學生實踐創新和工程應用能力。通過明確的學分要求保證學業導師制的落實。指導老師通過這樣一個環節對于特別優秀的學生可向學院推薦其保研,實現本研貫通培養,前后的培養具備一定的連續性。最后,為了充分利用學科資源及已有的實驗條件,培養學生實踐創新能力,更好地滿足新能源專業對學生實踐能力和新能源技術工程應用能力的高要求,在課內及集中實踐環節總學分要求基礎上還增加大于等于六個學分的課外實踐要求(社會實踐、競技活動)。
3.體現多學科交叉特點
在課程設置時,除開設“工程圖學”、“工程力學”、“電工電子學”、“機械原理”、“工程材料”等課程外,還增開了物理、化學方面的課以及“新能源材料”、“現代生物學導論”、“能源與環境”、“新能源系統自動控制原理”課程,這樣充分體現了新能源科學與工程專業和動力工程及工程熱物理、應用化學、材料物理、機械工程、化學工程與技術、環境科學與工程各學科的交叉。
4.重視形成寬闊的國際視野
首先,學校開設了全英文及雙語課程,比如全英文的“太陽能光伏技術”以及雙語的“熱流體數值計算基礎”、“熱泵原理與應用”、“生物質燃燒及混燃技術”課程。其次,借鑒國外新能源專業的課程設置增設了反映新能源領域前沿的“生命周期評價”課程。此外,還增設“新能源前沿及工程應用專題”必修課。這門課要求學生在第七學期結束前聽取學院安排的新能源前沿及工程應用專題講座7次以上。專題可以是合作企業、國內外知名專家的講座,也可以是本專業教師科研最新進展的講座,目的是讓學生了解本專業領域的最新研究進展及發展趨勢,拓寬視野,盡快適應社會發展要求,同時提高學生的專業興趣。
5.以太陽能為主,兼顧生物質能和風能,提供其他種類新能源的廣泛選擇的專業定位
首先,在太陽能方面,學校設置有“太陽能熱利用”和“太陽能光伏技術”專業課;在生物質能方面,開設有“現代生物學導論”和“生物質能轉化原理與技術”;而在風能方面,設置有“風力機空氣動力學”和“風力發電與控制技術”專業課。其次,還提供了廣泛的新能源相關選修課程來滿足學生對不同專業的需求,比如“氫能與新型能源動力系統”、“新能源發電并網技術”、“水力發電與水電站”、“燃料電池原理與技術”、“熱泵原理與應用”、“生物柴油制備及應用”、“生物質燃燒與混燃技術”、“能源工程管理”、和“能源經濟學概論”等課程。
四、結束語
新能源科學與工程專業的設置順應時代的發展,是我國可持續發展的需要。但是,由于新能源科學與工程專業是非常新的專業,與之配套的培養方案、課程安排等還處于起步探索階段。筆者考慮到本地區、本學校的實際情況,同時結合新能源產業對人才的要求提出了具有鮮明特色的新能源科學與工程專業的培養方案,以供參考。筆者相信江蘇大學有能力、有信心建設好該專業,為國家經濟的可持續健康發展輸送合格的人才。
參考文獻:
[1]任東明.中國新能源產業的發展和制度創新[J].中外能源,2011,
(1).
[2]王偉東,艾建軍,楊坤.新能源產業人才培養問題與對策[J].中國電力教育,2011,(12).
[3]張玨.新能源產業發展所需專業人才培養探討[J].中國人才,
2010,(8).
關鍵詞:梯度功能材料,復合材料,研究進展
Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.
Keywords:FGM;composite;theAdvance
0引言
信息、能源、材料是現代科學技術和社會發展的三大支柱。現代高科技的競爭在很大程度上依賴于材料科學的發展。對材料,特別是對高性能材料的認識水平、掌握和應用能力,直接體現國家的科學技術水平和經濟實力,也是一個國家綜合國力和社會文明進步速度的標志。因此,新材料的開發與研究是材料科學發展的先導,是21世紀高科技領域的基石。
近年來,材料科學獲得了突飛猛進的發展[1]。究其原因,一方面是各個學科的交叉滲透引入了新理論、新方法及新的實驗技術;另一方面是實際應用的迫切需要對材料提出了新的要求。而FGM即是為解決實際生產應用問題而產生的一種新型復合材料,這種材料對新一代航天飛行器突破“小型化”,“輕質化”,“高性能化”和“多功能化”具有舉足輕重的作用[2],并且它也可廣泛用于其它領域,所以它是近年來在材料科學中涌現出的研究熱點之一。
1FGM概念的提出
當代航天飛機等高新技術的發展,對材料性能的要求越來越苛刻。例如:當航天飛機往返大氣層,飛行速度超過25個馬赫數,其表面溫度高達2000℃。而其燃燒室內燃燒氣體溫度可超過2000℃,燃燒室的熱流量大于5MW/m2,其空氣入口的前端熱通量達5MW/m2.對于如此大的熱量必須采取冷卻措施,一般將用作燃料的液氫作為強制冷卻的冷卻劑,此時燃燒室內外要承受高達1000K以上的溫差,傳統的單相均勻材料已無能為力[1]。若采用多相復合材料,如金屬基陶瓷涂層材料,由于各相的熱脹系數和熱應力的差別較大,很容易在相界處出現涂層剝落[3]或龜裂[1]現象,其關鍵在于基底和涂層間存在有一個物理性能突變的界面。為解決此類極端條件下常規耐熱材料的不足,日本學者新野正之、平井敏雄和渡邊龍三人于1987年首次提出了梯度功能材料的概念[1],即以連續變化的組分梯度來代替突變界面,消除物理性能的突變,使熱應力降至最小[3]。
隨著研究的不斷深入,梯度功能材料的概念也得到了發展。目前梯度功能材料(FGM)是指以計算機輔助材料設計為基礎,采用先進復合技術,使構成材料的要素(組成、結構)沿厚度方向有一側向另一側成連續變化,從而使材料的性質和功能呈梯度變化的新型材料[4]。
2FGM的特性和分類
2.1FGM的特殊性能
由于FGM的材料組分是在一定的空間方向上連續變化的特點如圖2,因此它能有效地克服傳統復合材料的不足[5]。正如Erdogan在其論文[6]中指出的與傳統復合材料相比FGM有如下優勢:
1)將FGM用作界面層來連接不相容的兩種材料,可以大大地提高粘結強度;
2)將FGM用作涂層和界面層可以減小殘余應力和熱應力;
3)將FGM用作涂層和界面層可以消除連接材料中界面交叉點以及應力自由端點的應力奇異性;
4)用FGM代替傳統的均勻材料涂層,既可以增強連接強度也可以減小裂紋驅動力。
2.2FGM的分類
根據不同的分類標準FGM有多種分類方式。根據材料的組合方式,FGM分為金屬/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多種組合方式的材料[1];根據其組成變化FGM分為梯度功能整體型(組成從一側到另一側呈梯度漸變的結構材料),梯度功能涂敷型(在基體材料上形成組成漸變的涂層),梯度功能連接型(連接兩個基體間的界面層呈梯度變化)[1];根據不同的梯度性質變化分為密度FGM,成分FGM,光學FGM,精細FGM等[4];根據不同的應用領域有可分為耐熱FGM,生物、化學工程FGM,電子工程FGM等[7]。
3FGM的應用
FGM最初是從航天領域發展起來的。隨著FGM研究的不斷深入,人們發現利用組分、結構、性能梯度的變化,可制備出具有聲、光、電、磁等特性的FGM,并可望應用于許多領域。
功能
應用領域材料組合
緩和熱應
力功能及
結合功能
航天飛機的超耐熱材料
陶瓷引擎
耐磨耗損性機械部件
耐熱性機械部件
耐蝕性機械部件
加工工具
運動用具:建材陶瓷金屬
陶瓷金屬
塑料金屬
異種金屬
異種陶瓷
金剛石金屬
碳纖維金屬塑料
核功能
原子爐構造材料
核融合爐內壁材料
放射性遮避材料輕元素高強度材料
耐熱材料遮避材料
耐熱材料遮避材料
生物相溶性
及醫學功能
人工牙齒牙根
人工骨
人工關節
人工內臟器官:人工血管
補助感覺器官
生命科學磷灰石氧化鋁
磷灰石金屬
磷灰石塑料
異種塑料
硅芯片塑料
電磁功能
電磁功能陶瓷過濾器
超聲波振動子
IC
磁盤
磁頭
電磁鐵
長壽命加熱器
超導材料
電磁屏避材料
高密度封裝基板壓電陶瓷塑料
壓電陶瓷塑料
硅化合物半導體
多層磁性薄膜
金屬鐵磁體
金屬鐵磁體
金屬陶瓷
金屬超導陶瓷
塑料導電性材料
陶瓷陶瓷
光學功能防反射膜
光纖;透鏡;波選擇器
多色發光元件
玻璃激光透明材料玻璃
折射率不同的材料
不同的化合物半導體
稀土類元素玻璃
能源轉化功能
MHD發電
電極;池內壁
熱電變換發電
燃料電池
地熱發電
太陽電池陶瓷高熔點金屬
金屬陶瓷
金屬硅化物
陶瓷固體電解質
金屬陶瓷
電池硅、鍺及其化合物
4FGM的研究
FGM研究內容包括材料設計、材料制備和材料性能評價。
4.1FGM設計
FGM設計是一個逆向設計過程[7]。
首先確定材料的最終結構和應用條件,然后從FGM設計數據庫中選擇滿足使用條件的材料組合、過渡組份的性能及微觀結構,以及制備和評價方法,最后基于上述結構和材料組合選擇,根據假定的組成成份分布函數,計算出體系的溫度分布和熱應力分布。如果調整假定的組成成份分布函數,就有可能計算出FGM體系中最佳的溫度分布和熱應力分布,此時的組成分布函數即最佳設計參數。
FGM設計主要構成要素有三:
1)確定結構形狀,熱—力學邊界條件和成分分布函數;
2)確定各種物性數據和復合材料熱物性參數模型;
3)采用適當的數學—力學計算方法,包括有限元方法計算FGM的應力分布,采用通用的和自行開發的軟件進行計算機輔助設計。
FGM設計的特點是與材料的制備工藝緊密結合,借助于計算機輔助設計系統,得出最優的設計方案。
4.2FGM的制備
FGM制備研究的主要目標是通過合適的手段,實現FGM組成成份、微觀結構能夠按設計分布,從而實現FGM的設計性能。可分為粉末致密法:如粉末冶金法(PM),自蔓延高溫合成法(SHS);涂層法:如等離子噴涂法,激光熔覆法,電沉積法,氣相沉積包含物理氣相沉積(PVD)和化學相沉積(CVD);形變與馬氏體相變[10、14]。
4.2.1粉末冶金法(PM)
PM法是先將原料粉末按設計的梯度成分成形,然后燒結。通過控制和調節原料粉末的粒度分布和燒結收縮的均勻性,可獲得熱應力緩和的FGM。粉末冶金法可靠性高,適用于制造形狀比較簡單的FGM部件,但工藝比較復雜,制備的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的燒結法有常壓燒結、熱壓燒結、熱等靜壓燒結及反應燒結等。這種工藝比較適合制備大體積的材料。PM法具有設備簡單、易于操作和成本低等優點,但要對保溫溫度、保溫時間和冷卻速度進行嚴格控制。國內外利用粉末冶金方法已制備出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。
4.2.2自蔓延燃燒高溫合成法(Self-propagatingHigh-temperatureSynthesis簡稱SHS或CombustionSynthesis)
SHS法是前蘇聯科學家Merzhanov等在1967年研究Ti和B的燃燒反應時,發現的一種合成材料的新技術。其原理是利用外部能量加熱局部粉體引燃化學反應,此后化學反應在自身放熱的支持下,自動持續地蔓延下去,利用反應熱將粉末燒結成材,最后合成新的化合物。其反應示意圖如圖6所示[16]:
SHS法具有產物純度高、效率高、成本低、工藝相對簡單的特點。并且適合制造大尺寸和形狀復雜的FGM。但SHS法僅適合存在高放熱反應的材料體系,金屬與陶瓷的發熱量差異大,燒結程度不同,較難控制,因而影響材料的致密度,孔隙率較大,機械強度較低。目前利用SHS法己制備出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。
4.2.3噴涂法
噴涂法主要是指等離子體噴涂工藝,適用于形狀復雜的材料和部件的制備。通常,將金屬和陶瓷的原料粉末分別通過不同的管道輸送到等離子噴槍內,并在熔化的狀態下將它噴鍍在基體的表面上形成梯度功能材料涂層。可以通過計算機程序控制粉料的輸送速度和流量來得到設計所要求的梯度分布函數。這種工藝已經被廣泛地用來制備耐熱合金發動機葉片的熱障涂層上,其成分是部分穩定氧化鋯(PSZ)陶瓷和NiCrAlY合金[9]。
4.2.3.1等離子噴涂法(PS)
PS法的原理是等離子氣體被電子加熱離解成電子和離子的平衡混合物,形成等離子體,其溫度高達1500K,同時處于高度壓縮狀態,所具有的能量極大。等離子體通過噴嘴時急劇膨脹形成亞音速或超音速的等離子流,速度可高達1.5km/s。原料粉末送至等離子射流中,粉末顆粒被加熱熔化,有時還會與等離子體發生復雜的冶金化學反應,隨后被霧化成細小的熔滴,噴射在基底上,快速冷卻固結,形成沉積層。噴涂過程中改變陶瓷與金屬的送粉比例,調節等離子射流的溫度及流速,即可調整成分與組織,獲得梯度涂層[8、11]。該法的優點是可以方便的控制粉末成分的組成,沉積效率高,無需燒結,不受基體面積大小的限制,比較容易得到大面積的塊材[10],但梯度涂層與基
體間的結合強度不高,并存在涂層組織不均勻,空洞疏松,表面粗糙等缺陷。采用此法己制備出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料
4.2.3.2激光熔覆法
激光熔覆法是將預先設計好組分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便會產生用B合金化的A薄涂層,并焊接到B基底表面上,形成第一包覆層。改變注入粉末的組成配比,在上述覆層熔覆的同時注入,在垂直覆層方向上形成組分的變化。重復以上過程,就可以獲得任意多層的FGM。用Ti-A1合金熔覆Ti用顆粒陶瓷增強劑熔覆金屬獲得了梯度多層結構。梯度的變化可以通過控制初始涂層A的數量和厚度,以及熔區的深度來獲得,熔區的深度本身由激光的功率和移動速度來控制。該工藝可以顯著改善基體材料表面的耐磨、耐蝕、耐熱及電氣特性和生物活性等性能,但由于激光溫度過高,涂層表面有時會出現裂紋或孔洞,并且陶瓷顆粒與金屬往往發生化學反應[10]。采用此法可制備Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。
4.2.3.3熱噴射沉積[10]
與等離子噴涂有些相關的一種工藝是熱噴涂。用這種工藝把先前熔化的金屬射流霧化,并噴涂到基底上凝固,因此,建立起一層快速凝固的材料。通過將增強粒子注射到金屬流束中,這種工藝已被推廣到制造復合材料中。陶瓷增強顆粒,典型的如SiC或Al2O3,一般保持固態,混入金屬液滴而被涂覆在基底,形成近致密的復合材料。在噴涂沉積過程中,通過連續地改變增強顆粒的饋送速率,熱噴涂沉積已被推廣產生梯度6061鋁合金/SiC復合材料。可以使用熱等靜壓工序以消除梯度復合材料中的孔隙。
4.2.3.4電沉積法
電沉積法是一種低溫下制備FGM的化學方法。該法利用電鍍的原理,將所選材料的懸浮液置于兩電極間的外場中,通過注入另一相的懸浮液使之混合,并通過控制鍍液流速、電流密度或粒子濃度,在電場作用下電荷的懸浮顆粒在電極上沉積下來,最后得到FGM膜或材料[8]。所用的基體材料可以是金屬、塑料、陶瓷或玻璃,涂層的主要材料為TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固體基體材料的表面獲得金屬、合金或陶瓷的沉積層,以改變固體材料的表面特性,提高材料表面的耐磨損性、耐腐蝕性或使材料表面具有特殊的電磁功能、光學功能、熱物理性能,該工藝由于對鍍層材料的物理力學性能破壞小、設備簡單、操作方便、成型壓力和溫度低,精度易控制,生產成本低廉等顯著優點而備受材料研究者的關注。但該法只適合于制造薄箔型功能梯度材料。[8、10]
4.2.3.5氣相沉積法
氣相沉積是利用具有活性的氣態物質在基體表面成膜的技術。通過控制彌散相濃度,在厚度方向上實現組分的梯度化,適合于制備薄膜型及平板型FGM[8]。該法可以制備大尺寸的功能梯度材料,但合成速度低,一般不能制備出大厚度的梯度膜,與基體結合強度低、設備比較復雜。采用此法己制備出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。氣相沉積按機理的不同分為物理氣相沉積(PVD)和化學氣相沉積(CVD)兩類。
化學氣相沉積法(CVD)是將兩相氣相均質源輸送到反應器中進行均勻混合,在熱基板上發生化學反應并使反映產物沉積在基板上。通過控制反應氣體的壓力、組成及反應溫度,精確地控制材料的組成、結構和形態,并能使其組成、結構和形態從一種組分到另一種組分連續變化,可得到按設計要求的FGM。另外,該法無須燒結即可制備出致密而性能優異的FGM,因而受到人們的重視。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制備過程包括:氣相反應物的形成;氣相反應物傳輸到沉積區域;固體產物從氣相中沉積與襯底[12]。
物理氣相沉積法(PVD)是通過加熱固相源物質,使其蒸發為氣相,然后沉積于基材上,形成約100μm厚度的致密薄膜。加熱金屬的方法有電阻加熱、電子束轟擊、離子濺射等。PVD法的特點是沉積溫度低,對基體熱影響小,但沉積速度慢。日本科技廳金屬材料研究所用該法制備出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]
4.2.4形變與馬氏體相變[8]
通過伴隨的應變變化,馬氏體相變能在所選擇的材料中提供一個附加的被稱作“相變塑性”的變形機制。借助這種機制在恒溫下形成的馬氏體量隨材料中的應力和變形量的增加而增加。因此,在合適的溫度范圍內,可以通過施加應變(或等價應力)梯度,在這種材料中產生應力誘發馬氏體體積分數梯度。這一方法在順磁奧氏體18-8不銹鋼(Fe-18%,Cr-8%Ni)試樣內部獲得了鐵磁馬氏體α體積分數的連續變化。這種工藝雖然明顯局限于一定的材料范圍,但能提供一個簡單的方法,可以一步生產含有飽和磁化強度連續變化的材料,這種材料對于位置測量裝置的制造有潛在的應用前景。
4.3FGM的特性評價
功能梯度材料的特征評價是為了進一步優化成分設計,為成分設計數據庫提供實驗數據,目前已開發出局部熱應力試驗評價、熱屏蔽性能評價和熱性能測定、機械強度測定等四個方面。這些評價技術還停留在功能梯度材料物性值試驗測定等基礎性的工作上[7]。目前,對熱壓力緩和型的FGM主要就其隔熱性能、熱疲勞功能、耐熱沖擊特性、熱壓力緩和性能以及機械性能進行評價[8]。目前,日本、美國正致力于建立統一的標準特征評價體系[7~8]。
5FGM的研究發展方向
5.1存在的問題
作為一種新型功能材料,梯度功能材料范圍廣泛,性能特殊,用途各異。尚存在一些問題需要進一步的研究和解決,主要表現在以下一些方面[5、13]:
1)梯度材料設計的數據庫(包括材料體系、物性參數、材料制備和性能評價等)還需要補充、收集、歸納、整理和完善;
2)尚需要進一步研究和探索統一的、準確的材料物理性質模型,揭示出梯度材料物理性能與成分分布,微觀結構以及制備條件的定量關系,為準確、可靠地預測梯度材料物理性能奠定基礎;
3)隨著梯度材料除熱應力緩和以外用途的日益增加,必須研究更多的物性模型和設計體系,為梯度材料在多方面研究和應用開辟道路;
4)尚需完善連續介質理論、量子(離散)理論、滲流理論及微觀結構模型,并借助計算機模擬對材料性能進行理論預測,尤其需要研究材料的晶面(或界面)。
5)已制備的梯度功能材料樣品的體積小、結構簡單,還不具有較多的實用價值;
6)成本高。
5.2FGM制備技術總的研究趨勢[13、15、19-
20]
1)開發的低成本、自動化程度高、操作簡便的制備技術;
2)開發大尺寸和復雜形狀的FGM制備技術;
3)開發更精確控制梯度組成的制備技術(高性能材料復合技術);
4)深入研究各種先進的制備工藝機理,特別是其中的光、電、磁特性。
5.3對FGM的性能評價進行研究[2、13]
有必要從以下5個方面進行研究:
1)熱穩定性,即在溫度梯度下成分分布隨時間變化關系問題;
2)熱絕緣性能;
3)熱疲勞、熱沖擊和抗震性;
4)抗極端環境變化能力;
5)其他性能評價,如熱電性能、壓電性能、光學性能和磁學性能等
6結束語
FGM的出現標志著現代材料的設計思想進入了高性能新型材料的開發階段[8]。FGM的研究和開發應用已成為當前材料科學的前沿課題。目前正在向多學科交叉,多產業結合,國際化合作的方向發展。
參考文獻:
[1]楊瑞成,丁旭,陳奎等.材料科學與材料世界[M].北京:化學工業出版社,2006.
[2]李永,宋健,張志民等.梯度功能力學[M].北京:清華大學出版社.2003.
[3]王豫,姚凱倫.功能梯度材料研究的現狀與將來發展[J].物理,2000,29(4):206-211.
[4]曾黎明.功能復合材料及其應用[M].北京:化學工業出版社,2007.
[5]高曉霞,姜曉紅,田東艷等。功能梯度材料研究的進展綜述[J].山西建筑,2006,32(5):143-144.
[6]Erdogan,F.Fracturemechanicsoffunctionallygradedmaterials[J].Compos.Engng,1995(5):753-770.
[7]李智慧,何小鳳,李運剛等.功能梯度材料的研究現狀[J].河北理工學院學報,2007,29(1):45-50.
[8]李楊,雷發茂,姚敏,李慶文等.梯度功能材料的研究進展[J].菏澤學院學報,2007,29(5):51-55.
[9]林峰.梯度功能材料的研究與應用[J].廣東技術師范學院學報,2006,6:1-4.
[10]龐建超,高福寶,曹曉明.功能梯度材料的發展與制備方法的研究[J].金屬制品,2005,31(4):4-9.
[11]戈曉嵐,趙茂程.工程材料[M].南京:東南大學出版社,2004.
[12]唐小真.材料化學導論[M].北京:高等教育出版社,2007.
[13]李進,田興華.功能梯度材料的研究現狀及應用[J].寧夏工程技術,2007,6(1):80-83.
[14]戴起勛,趙玉濤.材料科學研究方法[M].北京:國防工業出版社,2005.
[15]邵立勤.新材料領域未來發展方向[J].新材料產業,2004,1:25-30.
[16]自蔓延高溫合成法.材料工藝及應用/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm
[17]遠立賢.金屬/陶瓷功能梯度涂層工藝的應用現狀./articleview/2006-6-6/article_view_405.htm.
[18]工程材料./zskj/3021/gccl/CH2/2.6.4.htm.