1000部丰满熟女富婆视频,托着奶头喂男人吃奶,厨房挺进朋友人妻,成 人 免费 黄 色 网站无毒下载

首頁 > 文章中心 > 量子計算的特性

量子計算的特性

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇量子計算的特性范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

量子計算的特性

量子計算的特性范文第1篇

關鍵詞 量子物理;現代信息技術;關系;原理應用

中圖分類號:O41 文獻標識碼:A 文章編號:1671-7597(2013)15-0001-02

量子物理是人們認識微觀世界結構和運動規律的科學,它的建立帶來了一系列重大的技術應用,使社會生產和生活發生了巨大的變革。量子世界的奇妙特性在提高運算速度、確保信息安全、增大信息容量等方面發揮重要的作用,基于量子物理基本原理的量子信息技術已成為當前各國研究與發展的重要科學技術領域。

隨著世界電子信息技術的迅猛發展,以微電子技術為基礎的信息技術即將達到物理極限,同時信息安全、隱私問題等越來越突出。2013年5月美國“棱鏡門”事件的爆發,引發了對保護信息安全的高度重視,將成為推動量子物理科學與現代信息技術的交融和相互促進發展的契機。因此,充分認識量子物理學的基本原理在現代信息技術中發展的基礎地位與作用,是促進現代信息技術發展的前提,也是豐富和發展量子物理學的需要。

1 量子物理基本原理

1)海森堡測不準原理。在量子力學中,任何兩組不可同時測量的物理量是共扼的,滿足互補性。在進行測量時,對其中一組量的精確測量必然導致另一組量的完全不確定,只能精確測定兩者之一。

2)量子不可克隆定理。在量子力學中,不能實現對各未知量子態的精確復制,因為要復制單個量子就只能先作測量,而測量必然改變量子的狀態,無法獲得與初始量子態完全相同的復制態。

3)態疊加原理。若量子力學系統可能處于和描述的態中,那么態中的線性疊加態也是系統的一個可能態。如果一個量子事件能夠用兩個或更多可分離的方式來實現,那么系統的態就是每一可能方式的同時迭加。

4)量子糾纏原理。是指微觀世界里,有共同來源的兩個微觀粒子之間存在著糾纏關系,不管它們距離多遠,只要一個粒子狀態發生變化,另一個粒子狀態隨即發生相應變化。換言之,存在糾纏關系的粒子無論何時何地,都能“感應”對方狀態的變化。

2 量子物理與現代信息技術的關系

2.1 量子物理是現代信息技術的基礎與先導

物理學一直是整個科學技術領域中的帶頭學科并成為整個自然科學的基礎,成為推動整個科學技術發展的最主要的動力和源泉。量子力學是20世紀初期為了解決物理上的一些疑難問題而建立起來的一種理論,它不僅解釋了微觀世界里的許多現象、經驗事實,而且還開拓了一系列新的技術領域,直接導致了原子能、半導體、超導、激光、計算機、光通訊等一系列高新技術產業的產生和發展。可以說,從電話的發明到互聯網絡的實時通信,從晶體管的發明到高速計算機技術的成熟,量子物理開辟了一種全新的信息技術,使人類進人信息化的新時代,因此,量子物理學是現代信息技術發展的主要源泉,而且隨著現代科學技術的飛速發展,量子物理學的先導和基礎作用將更加顯著和重要。

2.2 量子物理為現代信息技術的持續發展提供新的原理和方法

現代信息技術本質上是應用了量子力學基本原理的經典調控技術,隨著世界科學技術的迅猛發展,以經典物理學為基礎的信息技術即將達到物理極限。因此,現代信息技術的突破,實現可持續發展必須借助于新的原理和新的方法。量子力學作為原子層次的動力學理論,經過飛速發展,已向其他自然科學的各學科領域以及高新技術全面地延伸,量子信息技術就是量子物理學與信息科學相結合產生的新興學科,它為信息科學技術的持續發展提供了新的原理和方法,使信息技術獲得了活力與新特性,量子信息技術也成為當今世界各國研究發展的熱點領域。因此,未來的信息技術將是應用到諸如量子態、相位、強關聯等深層次量子特性的量子調控技術,充分利用量子物理的新性質開發新的信息功能,突破現代信息技術的物理極限。

2.3 現代信息技術對量子物理學發展的影響

量子信息技術應用量子力學原理和方法來研究信息科學,從而開發出現經典信息無法做到的新信息功能,反過來,現代信息技術的發展大大地豐富了量子物理學的研究內容,也將不斷地影響量子物理學的研究方法,有力地將量子理論推向更深層次的發展階段,使人類對自然界的認識更深刻、更本質。近年來,隨著量子信息技術領域研究的不斷深入,量子信息技術的發展也使量子物理學研究取得了不少成果,如量子關聯、基于熵的不確定關系、量子開放系統環境的控制等問題研究取得了巨大進展。

3 基于量子物理學原理的量子信息技術

基于量子物理原理和方法的量子信息技術成為21世紀信息技術發展的方向,也是引領未來科技發展的重要領域。當前量子物理學的基本原理已經在量子密碼術、量子通信、量子計算機等方面得到充分的理論論證和一定的實踐應用。

3.1 量子計算機——量子疊加原理

經典計算機建立在經典物理學基礎上,遵循普通物理學電學原理的邏輯計算方式,即用電位高低表示0和1以進行運算,因此,經典計算機只能靠以縮小芯片布線間距,加大其單位面積上的數據處理量來提高運算速度。而量子計算遵循量子力學規律進行高速數學和邏輯運算、存儲及處理量子信息。計算方式是建立在微觀量子物理學關于量子具有波粒兩重性和雙位雙旋特性的基礎上,量子算法的中心思想是利用量子態的疊加態與糾纏態。在量子效應的作用下,量子比特可以同時處于0和1兩種相反的狀態(量子疊加),這使量子計算機可以同時進行大量運算,因此,量子計算的并行處理,使量子計算機實現了最快的計算速度。未來,基于量子物理原理的量子計算機,不僅運算速度快,存儲量大、功耗低,而且體積會大大縮小。

3.2 量子通信——量子糾纏原理

量子通信是一種利用量子糾纏效應進行信息傳遞的新型通信方式。量子通信主要涉及:量子密碼通信、量子遠程傳態和量子密集編碼等。從信息學上理解,量子通信是利用量子力學的量子態隱形傳輸或者其他基本原理,以量子系統特有屬性及量子測量方法,完成兩地之間的信息傳遞;從物理學上講,量子通信是采用量子通道來傳送量子信息,利用量子效應實現的高性能通信方式,突破現代通信物理極限。量子力學中的糾纏性與非定域性可以保障量子通信中的絕對安全的量子通信,保證量子信息的隱形傳態,實現遠距離信息轉輸。所以,與現代通信技術相比,量子通信具有巨大的優越性,具有保密性強、大容量、遠距離傳輸等特點,量子通信創建了新的通信原理和方法。

3.3 量子密碼——不可克隆定理

經典密碼是以數學為基礎,通過經典信號實現,在密鑰傳送過程中有可能被竊聽且不被覺察,故經典密碼的密鑰不安全。量子密碼是一種以現代密碼學和量子力學為基礎,利用量子物理學方法實現密碼思想和操作的新型密碼體制,通過量子信號實現。量子密碼主要基于量子物理中的測不準原理、量子不可克隆定理等,通信雙方在進行保密通信之前,首先使用量子光源,依照量子密鑰分配協議在通信雙方之間建立對稱密鑰,再使用建立起來的密鑰對明文進行加密,通過公開的量子信道,完成安全密鑰分發。因此量子密碼技術能夠保證:

1)絕對的安全性。對輸運光子線路的竊聽會破壞原通訊線路之間的相互關系,通訊會被中斷,且合法的通信雙方可覺察潛在的竊聽者并采取相應的措施。

2)不可檢測性。無論破譯者有多么強大的計算能力,都會在對量子的測量過程中改變量子的狀態而使得破譯者只能得到一些毫無意義的數據。因此,量子不可克隆定理既是量子密碼安全性的依靠,也給量子信息的提取設置了不可逾越的界限,即無條件安全性和對竊聽者的可檢測性成為量子密碼的兩個基本特征。

4 結論

量子物理是現代信息技術誕生的基礎,是現代信息技術突破物理極限,實現持續發展的動力與源泉。基于量子物理學的原理、特性,如量子疊加原理、量子糾纏原理、海森堡測不準原理和不可克隆定理等,使得量子計算機具有巨大的并行計算能力,提供功能更強的新型運算模式;量子通信可以突破現代信息技術的物理極限,開拓出新的信息功能;量子密碼絕對的安全性和不可檢測性,實現了絕對的保密通信。隨著量子物理學理論在信息技術中的深入應用,量子信息技術將開拓出后莫爾時代的新一代的信息技術。

參考文獻

[1]陳楓.量子通信:劃時代的嶄新技術[N].報,2011.

[2]曾謹言.量子物理學百年回顧[J].北京大學物理學科90年專題特約專稿,2003(10).

[3]李應真,吳斌.物理學是當代高新技術的主要源泉[J].學術論壇,2012.

[4]董新平,楊綱.量子信息原理及其進展[J].許昌學院學報,2007.

[5]周正威,陳巍,孫方穩,項國勇,李傳鋒.量子信息技術縱覽[J].中國科學,2012(17).

[6]郭光燦.量子信息技術[J].中國科學院院刊,2002(5).

[7]朱煥東、黃春暉.量子密碼技術及其應用[J].國外電子測量技術,2006(12).

量子計算的特性范文第2篇

【關鍵詞】量子計算;量子計算機;量子算法;量子信息處理

1、引言

在人類剛剛跨入21山_紀的時刻,!日_界科技的重大突破之一就是量子計算機的誕生。德國科學家已在實驗室研制成功5個量子位的量子計算機,而美國LosAlamos國家實驗室正在進行7個量子位的量子計算機的試驗。它預示著人類的信息處理技術將會再一次發生巨大的飛躍,而研究面向量子計算機以量子計算為基礎的量子信息處理技術已成為一項十分緊迫的任務。

2、子計算的物理背景

任何計算裝置都是一個物理系統。量子計算機足根據物理系統的量子力學性質和規律執行計算任務的裝置。量子計算足以量子計算目L為背景的計算。是在量了力。4個公設(postulate)下做出的代數抽象。Feylllilitn認為,量子足一種既不具有經典耗子性,亦不具有經典渡動性的物理客體(例如光子)。亦有人將量子解釋為一種量,它反映了一些物理量(如軌道能級)的取值的離散性。其離散值之問的差值(未必為定值)定義為量子。按照量子力學原理,某些粒子存在若干離散的能量分布。稱為能級。而某個物理客體(如電子)在另一個客體(姻原子棱)的離散能級之間躍遷(transition。粒子在不同能量級分布中的能級轉移過程)時將會吸收或發出另一種物理客體(如光子),該物理客體所攜帶的能量的值恰好是發生躍遷的兩個能級的差值。這使得物理“客體”和物理“量”之問產生了一個相互溝通和轉化的橋梁;愛因斯坦的質能轉換關系也提示了物質和能量在一定條件下是可以相互轉化的因此。量子的這兩種定義方式是對市統并可以相互轉化的。量子的某些獨特的性質為量了計算的優越性提供了基礎。

3、量子計算機的特征

量子計算機,首先是能實現量子計算的機器,是以原子量子態為記憶單元、開關電路和信息儲存形式,以量子動力學演化為信息傳遞與加工基礎的量子通訊與量子計算,是指組成計算機硬件的各種元件達到原子級尺寸,其體積不到現在同類元件的1%。量子計算機是一物理系統,它能存儲和處理關于量子力學變量的信息。量子計算機遵從的基本原理是量子力學原理:量子力學變量的分立特性、態迭加原理和量子相干性。信息的量子就是量子位,一位信息不是0就是1,量子力學變量的分立特性使它們可以記錄信息:即能存儲、寫入、讀出信息,信息的一個量子位是一個二能級(或二態)系統,所以一個量子位可用一自旋為1/2的粒子來表示,即粒子的自旋向上表示1,自旋向下表示0;或者用一光子的兩個極化方向來表示0和1;或用一原子的基態代表0第一激發態代表1。就是說在量子計算機中,量子信息是存儲在單個的自旋’、光子或原子上的。對光子來說,可以利用Kerr非線性作用來轉動一光束使之線性極化,以獲取寫入、讀出;對自旋來說,則是把電子(或核)置于磁場中,通過磁共振技術來獲取量子信息的讀出、寫入;而寫入和讀出一個原子存儲的信息位則是用一激光脈沖照射此原子來完成的。量子計算機使用兩個量子寄存器,第一個為輸入寄存器,第二個為輸出寄存器。函數的演化由幺正演化算符通過量子邏輯門的操作來實現。單量子位算符實現一個量子位的翻轉。兩量子位算符,其中一個是控制位,它確定在什么情況下目標位才發生改變;另一個是目標位,它確定目標位如何改變;翻轉或相位移動。還有多位量子邏輯門,種類很多。要說清楚量子計算,首先看經典計算。經典計算機從物理上可以被描述為對輸入信號序列按一定算法進行交換的機器,其算法由計算機的內部邏輯電路來實現。經典計算機具有如下特點:

a)其輸入態和輸出態都是經典信號,用量子力學的語言來描述,也即是:其輸入態和輸出態都是某一力學量的本征態。如輸入二進制序列0110110,用量子記號,即10110110>。所有的輸入態均相互正交。對經典計算機不可能輸入如下疊加Cl10110110>+C2I1001001>。

b)經典計算機內部的每一步變換都將正交態演化為正交態,而一般的量子變換沒有這個性質,因此,經典計算機中的變換(或計算)只對應一類特殊集。

相應于經典計算機的以上兩個限制,量子計算機分別作了推廣。量子計算機的輸入用一個具有有限能級的量子系統來描述,如二能級系統(稱為量子比特),量子計算機的變換(即量子計算)包括所有可能的幺正變換。因此量子計算機的特點為:

a)量子計算機的輸入態和輸出態為一般的疊加態,其相互之間通常不正交;

b)量子計算機中的變換為所有可能的幺正變換。得出輸出態之后,量子計算機對輸出態進行一定的測量,給出計算結果。由此可見,量子計算對經典計算作了極大的擴充,經典計算是一類特殊的量子計算。量子計算最本質的特征為量子疊加性和相干性。量子計算機對每一個疊加分量實現的變換相當于一種經典計算,所有這些經典計算同時完成,并按一定的概率振幅疊加起來,給出量子計算的輸出結果。這種計算稱為量子并行計算,量子并行處理大大提高了量子計算機的效率,使得其可以完成經典計算機無法完成的工作,這是量子計算機的優越性之一。

4、量子計算機的應用

量子計算機驚人的運算能使其能夠應用于電子、航空、航人、人文、地質、生物、材料等幾乎各個學科領域,尤其是信息領域更是迫切需要量子計算機來完成大量數據處理的工作。信息技術與量子計算必然走向結合,形成新興的量子信息處理技術。目前,在信息技術領域有許多理論上非常有效的信息處理方法和技術,由于運算量龐大,導致實時性差,不能滿足實際需要,因此制約了信息技術的發展。量子計算機自然成為繼續推動計算速度提高,進而引導各個學科全面進步的有效途徑之一。在目前量子計算機還未進入實際應用的情況下,深入地研究量子算法是量子信息處理領域中的主要發展方向,其研究重點有以下三個方面;

(1)深刻領悟現有量子算法的木質,從中提取能夠完成特定功能的量子算法模塊,用其代替經典算法中的相應部分,以便盡可能地減少現有算法的運算量;

(2)以現有的量子算法為基礎,著手研究新型的應用面更廣的信息處理量子算法;

(3)利用現有的計算條件,盡量模擬量子計算機的真實運算環境,用來驗證和開發新的算法。

5、量子計算機的應用前景

目前經典的計算機可以進行復雜計算,解決很多難題。但依然存在一些難解問題,它們的計算需要耗費大量的時間和資源,以致在宇宙時間內無法完成。量子計算研究的一個重要方向就是致力于這類問題的量子算法研究。量子計算機首先可用于因子分解。因子分解對于經典計算機而言是難解問題,以至于它成為共鑰加密算法的理論基礎。按照Shor的量子算法,量子計算機能夠以多項式時間完成大數質因子的分解。量子計算機還可用于數據庫的搜索。1996年,Grover發現了未加整理數據庫搜索的Grover迭代量子算法。使用這種算法,在量子計算機上可以實現對未加整理數據庫Ⅳ的平方根量級加速搜索,而且用這種加速搜索有可能解決經典上所謂的NP問題。量子計算機另一個重要的應用是計算機視覺,計算機視覺是一種通過二維圖像理解三維世界的結構和特性的人工智能。計算機視覺的一個重要領域是圖像處理和模式識別。由于圖像包含的數據量很大,以致不得不對圖像數據進行壓縮。這種壓縮必然會損失一部分原始信息。

作者簡介:

量子計算的特性范文第3篇

量子密碼應運而生

量子計算的原理與傳統計算機采用的原理有很大不同,傳統計算機采用單路串行操作,而量子計算機采用多路并行操作,它們運算速度的差異就如同萬只飛鳥同時升上天空與萬只蝸牛排隊過獨木橋的區別。

20世紀70年代,英國和美國最早開始對量子計算的研究。近年來,量子計算的理論和實踐都相繼取得重大進展,產生了多種新的量子算法,研制了多種量子計算機原型。

科學家預測,未來10~20年將研制成功103~104量子比特的大型量子計算機,其運算能力可以在幾分鐘內破譯現有任何采用非對稱密鑰系統生成的密碼。

面對量子計算未來可能隨時“秒殺”傳統密碼的危險,科學家致力于尋找不基于數學問題,能有效抵抗量子計算攻擊的新型密碼體制。解鈴還須系鈴人,同樣基于量子信息技術的量子密碼應運而生,成為對抗量子計算的“神器”。

又一個可能的“技術差”

二戰中,英國破譯德軍ENGMA密碼,獲知其即將轟炸考文垂市,但為保守德軍密碼已被破譯的秘密,英國斷然犧牲考文垂這個重要工業城市,不發出防空警報任由德軍轟炸;美軍在中途島海戰的勝利,以及擊落山本五十六座機等影響戰爭進程的重大事件,與其成功破譯日軍“紫密”有直接關系。一些專家們甚至估計,盟軍在密碼破譯上的成功至少使二戰縮短了8年。

當前,戰場網絡已成為連接人與武器、武器與武器的技術紐帶,構成了信息化軍隊的神經中樞。偵察預警、指揮協同、武器控制、后勤保障等作戰活動均離不開網絡的支持。安全可靠的戰場網絡是保證自身作戰體系穩定,在體系對抗中謀取勝勢的重要前提,而戰場網絡的安全又十分依賴于網絡通信密碼提供的“安全屏障”。

一個國家的軍隊一旦率先實現量子密碼和量子計算的武器化,并在戰爭中投入使用,將與對手形成巨大的“技術差”,在保持自身網絡通信絕對安全的同時,可隨時破譯對方網絡通信密碼,洞悉對手的一舉一動,從而占據絕對信息優勢,甚至可以直接癱瘓和控制對方網絡,由此將置作戰對手于極為被動的不利地位,戰局可能出現“一邊倒”的情況。

以超常措施推進軍事應用

意大利軍事家杜黑指出:“勝利只向那些能預見戰爭特性變化的人微笑,而不是向那些等待變化發生才去適應的人微笑。”面對量子信息技術的機遇與挑戰,只有未雨綢繆,盡早規劃,提前部署,才能在未來戰爭中占據先機和主動,避免對手利用技術突然性陷我于被動。

目前,量子密碼已經從實驗室演示性研究邁向實際應用。發達國家軍隊已把量子信息技術作為引領未來軍事革命的顛覆性、戰略性技術。例如,美國防高級研究計劃局專門制定“量子信息科學和技術發展規劃”、研發量子芯片的“微型曼哈頓”計劃等。美國正加速推進量子信息技術的實際應用,美國白宮和五角大樓已安裝量子通信系統并已投入使用。英、法、德、日等國軍隊也相繼制定實施一系列發展量子信息技術的計劃。

量子計算的特性范文第4篇

量子通信,安全“大衛士”

說起量子衛星,就得先講講什么是量子。對一般人來說,“量子”一詞似乎有點深奧,難以理解。實際上,量子是組成物質的基本單元,是能量不能再分割的最小單位。如,量子是光能量的最小單位,不存在“半個光子”。

量子通信的安全性,就是基于單個光子的不可分割性和量子態的不可復制性,從而保證了信息不被竊聽和不可破解的安全性。

量子通信絕對安全,還因為量子有兩個基本特性,即量子的疊加和量子糾纏。量子疊加,是指一個量子系統可以處在不同量子態的疊加態上。也就是說,任何一個干擾包括光照都會使量子改變狀態,即它剛才還在隨機蹦Q,忽然就停止不動了,變幻莫測。

著名的“薛定諤虐貓”理論就形象描述了這一現象:裝在盒子里的貓,在盒子沒打開時,貓可以同時既是活的又是死的,只有打開看才知道。這表明,量子狀態隨機變化,兩種狀態可疊加存在,這就是量子的疊加態;量子糾纏,是指量子間具有像孫悟空和其分身那樣“心有靈犀”的功能,兩個量子無論相隔多遠,若對其中一個量子態做任何改變,另一個會立刻感受到,并做相應的狀態改變,這就為遠距離同步傳遞不被破解的信息提供了可能性。

歐洲、美國、日本等國的科學家很早就對量子通信進行研究實驗,但由于種種原因而成效甚微。我國研究量子通信雖然起步較晚,于2011年才啟動量子衛星研制計劃,然而在黨和國家極其重視和大力支持下,一舉獲得開創性的突破,成功地發射了“墨子號”量子衛星,成為這一科技領域的領路者。

“墨子號”開創安全通信新時代

“墨子號”量子衛星發射后,將實驗遠距離傳輸不可破解信息的方式,即衛星升空后,其主要任務是建立一個量子密鑰分發網絡,并在太空中首次進行量子糾纏分發實驗,從而展現一種讓用戶免受最精明的竊聽者傷害的安全網絡,開創安全通信的新時代。

潘建偉院士是研制“墨子號”量子衛星的領軍人物。20世紀80年代初,法國科學家阿蘭?阿斯佩首次用實驗證實了“量子糾纏”現象存在后,潘建偉于20世紀90年代赴量子力學創始人薛定諤的祖國奧地利留學,學習最先進、最完整的量子科學知識,奠定了其在量子科學方面的基礎。潘建偉學成回國后,很快就投入到量子通信方面的研究實驗。

2003年,潘建偉研究小組正式成立,主攻自由空間量子通信方面的研究。他們在實驗點制備出成對的糾纏光子,再利用專門設計加工的發射望遠鏡將容易發散的細小光束“增肥”后,向東西相距13千米的兩個實驗站發送。然后,實驗站的接收端用同樣型號的望遠鏡收集。實驗人員發現,在如此遠距離的傳送中,竟有許多糾纏光子“夫妻對”仍能保持相互糾纏狀態,其攜帶信息的數量和質量完全能滿足基于衛星的全球化量子通信的要求。

在國家的大力支持下,量子衛星研制團隊經過精心研究實驗,終于在2016年8月16日將我國研制的世界首顆量子衛星成功發射。這次發射不僅使我國走到世界量子通信研究領域的最前沿,更重要的是,它使我們在獲得網絡安全“圣杯”(即令黑客無法滲透的數字通信系統)方面大大領先于全球競爭對手。

全球的量子通信網絡,起步

首顆量子衛星上天,我國在國際上將率先實現高速星地量子通信,借助連接地面光纖量子通信網絡,初步構成全球量子通信網絡。

據潘建偉院士透露,京滬干線大尺度光纖量子通信骨干網工程將于2016年下半年完工交付。該工程將構建千公里級高可信、可擴展、軍民融合的廣域光纖量子通信網絡,并建成大尺度量子通信技術驗證、應用研究和應用示范研究平臺。

參與量子衛星研制的奧地利科學家/潘建偉導師蔡林格強調說:“量子衛星有助于信息傳遞者和接收者遠距離交換令信息無法破解的密鑰,而量子衛星將首先同北京交換密鑰,今后還可在北京和維也納之間分發量子密鑰”,逐步構筑成全球量子通信網絡。

值得慶賀的是,“墨子號”衛星發射后一直表現很好,所有參數都已達標,有些甚至高于預期。“墨子號”衛星發射升空一周時,中科院國家天文臺興隆觀測站觀測到罕見的紅、綠光束。人們形象地說,“墨子號”實現了天地“握手”, 這一觀測顯示“墨子號”可以正常通信聯系了。

量子通信,許你美好未來

目前,量子通信這一“永不被破解”的信息安全傳輸方式,已在市場上得以產業應用,如工商銀行等多家銀行率先試用量子通信加密技術。工商銀行通過國盾的量子加密技術,將數據從數據中心傳輸到同城的另一個機房內。這樣做是因為通過設備產生量子密鑰,再對數據進行加密傳輸是不會被竊取的,這對金融數據傳輸非常必要。

早在2008年10月,中國科技大學通過實驗將合肥市內的本校區、杏林苑、濱湖新區三個本不相干的點連接在一起。由于這三個點組成三節點可擴展的量子通信網絡,因而實現了全球首個量子保密電話系統建設,開創了量子通信網的先河。隨后,五節點,四十六節點,合肥、濟南城域網,“京滬”城際網……量子通信網在不斷擴張。

如今量子通信衛星發射成功后,量子通信網絡如虎添翼,就能真正升到“廣域”“洲際”傳播,為信息保密傳輸開辟了“天地一體”的廣闊天地。預計今年12月貫通的量子通信京滬干線(總長2000多千米)建成后,將主要用于軍事、金融、政務等領域的信息安全傳輸。此外,媒體、大型企業、金融機構等都可以成為量子通信用戶。量子通信關鍵技術的研發,初步形成構建空地一體廣域量子通信網絡體系的能力,并在全天時量子通信上取得突破。

量子通信的應用前景美好,但普及應用是逐步進行的,就像電話、手機的普及過程一樣。起初,量子通信會應用于科學研究、國防、政務和金融等領域,之后才會在大眾中廣泛應用。至于要讓每個人都能用上,估計需要10至15年。屆時,每個人的家里、手機上或許會有一個量子加密芯片,銀行轉款、電子賬戶等操作將不用擔心被盜用或者遭到攻擊。

量子計算機,有望走入現實

更引人注目的是,隨著對量子科學的深入研究和量子衛星的成功發射,進一步促進了量子計算機的發展。

在“墨子號”發射前不久,中國科技大學量子實驗室成功研發出半導體量子芯片和量子存儲技術,取得了量子計算機研制的突破性進展。量子芯片用于計算機的邏輯運算和信息處理,被稱為計算機的“大腦”;有了量子存儲裝置,科學家利用它能實現超遠距離的量子信息傳輸。因此,該技術的突破特別振奮人心。

為什么要研制量子計算機?早在1981年,物理學家理查德?費曼就提出了此觀點:如果用傳統電子計算機模擬量子力學,那么微觀粒子的數量越多,計算量就越大,也就越不可能實現模擬。這種情況下要實現量子力學的模擬,就必須用和它的原理相同的方式。人們認為他的說法有道理,而且也得到事實的證明。于是,量子力學和計算機科學便開始結合,人們開始研究量子計算機了。

量子計算機優勢大,關鍵在于它一個量子位可同時處于0和1兩個狀態,這是由量子疊加特性決定的。與此形成對比的是,傳統電子計算機中的晶體管一次只能處于0或1的狀態。如此一來,如果要進行海量運算量子計算機更合適。

因為,傳統電子計算機只能按時間順序來進行運算;而量子計算機能做到超并行運算,即它的N個量子位可同時表示2的N次方個狀態,數量呈指數增長。譬如,目前我國性能最強大的天河二號超級計算機需要100年才能處理的任務,一臺量子計算機只需0.01秒就能完成。

因而,量子計算機適用于龐大運算量的項目,如太空探測、核爆模擬、密碼破解、氣候變化、藥物研究和模擬復雜的化學反應等。量子計算機對解決精確的天氣預報和大城市交通擁堵等難題,也能大顯身手,迎接挑戰。

現在量子計算機研制已露出希望的曙光,出現這種具有高超速運算能力的計算機已為時不遠。目前,中國科技大學研制的量子芯片已達到容錯計算的精度,但邏輯比特數量僅有3個,當邏輯比特數量超過30個時,量子計算的性能將超越傳統計算機。看來,量子計算機由科幻變為現實已指日可待。

量子計算的特性范文第5篇

多年以前,高科技最牛的美國就已不把電子計算機列為高科技產品了。

但巨高性能計算機仍是信息時代的高科技標志物件之一。2012年諾貝爾物理學獎發給了法國人塞爾日·阿羅什和美國人大衛·維恩蘭德,這兩位科學家的研究成果為新一代超級量子計算機的誕生提供了可能性。

惡搞一下:法國人浪漫,而簡稱美國人為美人,那么,浪漫人美人=?

文藝范兒的信息

不往濫俗里想,那么,答案就是很文藝化的表達了。其實,“信息”最初是相當文藝范兒的,而不是20世紀中期才開始熱門起來的科技詞匯。

一般認為,中文的“信息”一詞出自南唐詩人李中《暮春懷故人》:“夢斷美人沉信息,目穿長路倚樓臺。”—— “美眉音信消息全無啊,夢里也夢不到你,我獨自上樓倚欄,望眼欲穿望到長路盡頭也不見你。”這么拙劣地意譯,也讓人感覺到深深的思念。

其實,在李中之前一百多年,與李商隱齊名的唐朝大詩人杜牧《寄遠》里就有“信息”了:“塞外音書無信息,道旁車馬起塵埃。”還有比小杜更早的,唐朝詩人崔備的《清溪路中寄諸公》:“別來無信息,可謂井瓶沉。”

宋朝的婉約派大詞人柳永、李清照也用過“信息”這個詞。因金兵入侵而流離失所的李清照思念當年安樂的故鄉,心理上把信息的價格定成了真正的天價:“不乞隋珠與和璧,只乞鄉關新信息。”——千年前的唐宋中國,其高科技雖是世界第一,但信息技術還是跟現在沒法比的,要靠驛馬、鴻雁甚至人步行來傳遞信息,速度慢而效率低,信息珍貴啊。

在地球的西方呢?雖然香農1948年就劃時代地把信息引為數學研究的對象,賦予其新的科學的涵義;至1956年,“人工智能”術語也出現了。可最早討論數據、信息、知識與智慧之間關系的,卻是得過諾貝爾文學獎的大詩人艾略特(T. S. Eliot;錢鐘書故意譯為“愛利惡德”)。他在1934年的詩歌“The Rock”中寫道:

Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

Where is the information we have lost in data?

我們迷失于生活中的生命在哪里?

我們迷失于知識中的智慧在哪里?

我們迷失于信息中的知識在哪里?

我們迷失于數據中的信息在哪里?

盡管第四句是好事者后加的,但詩人還是直指本質地提出了信息暴炸時代最困擾人的難題:如何不讓我們的生命和智慧都迷失在數據中?

量子計算機和量子信息技術,提供了一種讓生命和智慧不要淹沒在數據的海洋中的途徑、工具和可能。

量子與量子計算機

量子理論是現代物理學的兩大基石之一,為從微觀理解宏觀提供了理論基礎。客觀世界有物質、能量兩種存在形式,物質和能量可以互相轉換(見愛因斯坦的質能方程),量子理論就是從研究極度微觀領域物質的能量入手而建立起來的。

我們知道,微觀世界中有許多不同于宏觀世界的現象和規則。經典物理學理論中的能量是連續變化的,可取任意值,但科學家們發現微觀世界中的很多物理現象無法解釋。1900年12月14日,普朗克在解釋“黑體輻射”時提出:像原子是一切物質的構成單元一樣,“能量子(量子)”是能量的最小單元,原子吸收或發射能量是一份一份地進行的。這是量子物理理論的誕生。

1905年,愛因斯坦把量子概念引進光的傳播過程,提出“光量子(光子)”的概念,并提出光的“波粒二象性”。1920年代,德布羅意提出“物質波”概念,即一切物質粒子均有波粒二象性,海森堡等建立了量子矩陣力學,薛定諤建立了量子波動力學,量子理論進入了量子力學階段。1928年,狄拉克完成了矩陣力學和波動力學之間的數學轉換,對量子力學理論進行了系統的總結,成功地將相對論和量子力學兩大理論體系結合起來,使量子理論進入量子場論階段。

“量子”詞源拉丁語quantum,意為“某數量的某事物”。現代物理學中,某些物理量的變化是以最小的單位跳躍式進行的,而不是連續的,這個最小的基本單位叫做量子;或者說,一個物理量如果有不可連續分割的最小的基本單位,則這個物理量(所有的有形性質)是“可量子化的”,或者說其物理量的數值會是特定的數值而非任意值。例如,在(休息狀態)的原子中,電子的能量是可量子化的,這能決定原子的穩定和一般問題。

雖然量子理論與我們日常經驗感覺的世界大不一樣,但量子力學已經在真實世界應用。激光器工作的原理,實際上就是激發一個特定量子散發能量。現代社會要處理大量數據和信息,需要計算的機器(計算機)。量子力學的突破,使瓦格納等于1930年發現半導體同時有導體和絕緣體的性質,后來才有了用于電子計算機的同時作為電子信號放大器和轉換器的晶體管,再有了集成電路芯片,今天的一個尖端芯片可集聚數十億個微處理器。

隨著計算機科技的發展,發現能耗導致發熱而影響芯片集成度,限制了計算速度;能耗源于計算過程中的不可逆操作,但計算機都可找到對應的可逆計算機且不影響運算能力。既然都能改為可逆操作,在量子力學中則可用一個幺正變換來表示。1969年,威斯納提出“基于量子力學的計算設備”,豪勒夫等于1970年代論述了“基于量子力學的信息處理”。1980年代量子計算機的理論變得很熱鬧。費曼發現模擬量子現象時,數據量大至無法用電子計算機計算,在1982年提出用量子系統實現通用計算以減少運算時間;杜斯于1985年提出量子圖靈機模型。1994年,數學家彼得·秀爾提出量子質因子分解算法,因其可破解現行銀行和網絡應用中的加密,許多人開始研究實際的量子計算機。

在物理上,傳統的電子計算機可以被描述為對輸入信號串行按一定算法進行變換的機器,其算法由機器內部半導體集成邏輯電路來實現,其輸入態和輸出態都是傳統信號(輸入態和輸出態都是某一力學量的本征態),存儲數據的每個單元(比特bit)要么是“0”要么是“1”,即在某一時間僅能存儲4個二進制數(00、01、10、11)中的一個。而量子計算機靠控制原子或小分子的狀態,用量子算法運算數據,輸入態和輸出態為一般的疊加態,其相互之間通常不正交,其中的變換為所有可能的幺正變換;因為量子態有疊加性(重疊)和相干性(牽連、糾纏)兩個本質特性,量子比特(量子位qubit)可是“0”或“1”或兩個“0”或兩個“1”,即可同時存儲4個二進制數(00、01、10、11),實現量子并行計算(量子計算機對每一個疊加分量實現的變換相當于一種傳統計算,所有傳統計算同時完成,并按一定的概率振幅疊加,給出量子計算機的輸出結果),從而呈指數級地提高了運算能力——一臺未來的量子計算機3分鐘就能搞定當今世界上所有電子計算機合起來100萬年才能處理完的數據。用量子力學語言說,傳統計算機是沒有用到量子力學中重疊和牽連特性的一種特殊的量子計算機。從理論上講,一個250量子比特(由250個原子構成)的存儲器,可能存儲2的250次方個二進制數,比人類已知宇宙中的全部原子數還多。而且,集成芯片制造業很快將步入16納米的工藝,而量子效應將嚴重影響芯片的設計和生產,又因傳統技術的物理局限性,硅芯片已到盡頭,突破的希望在于量子計算。

量子世界的死貓活貓與粒子控制

喜好科技的文藝青年可能看過美劇《生活大爆炸》,其中有那只著名的“薛定諤貓”:一只被關在黑箱里的貓,箱里有毒藥瓶,瓶上有錘子,錘子由電子開關控制,電子開關由一個獨立的放射性原子控制;若原子核衰變放出粒子觸動開關,錘落砸瓶放毒,則貓死。薛定諤構想的這個實驗,被引為解釋量子世界的經典。而量子理論認為,單個原子的狀態其實不是非此即彼,或說箱里的原子既衰變又沒有衰變,表現為一種概率;對應到貓,則是既死又活。若我們不揭開蓋子觀察,永遠也不知道貓的死活,它永遠處于非死非活的疊加態。

宏觀態的確定性,其實是億萬微觀粒子、無數種概率的宏觀統計結果。微觀粒子通常表現為兩種截然不同的狀態糾纏一起,一旦用宏觀方法觀察這種量子態,只要稍一揭開箱蓋,疊加態立即就塌縮了(擾破壞掉),薛定諤貓就突然由量子的又死又活疊加態變成宏觀的確定態。用實驗研究量子,首先要捕獲單個的量子。即若不分離出單個粒子,則粒子神秘的量子性質便會消失。科學家們長期以來頭疼的是,未找到既不破壞量子態,又能實際觀測它的實驗方法,他們只能在頭腦中進行思想實驗,而無法實際驗證其預言。

而阿羅什和維恩蘭德的研究,發明了在保持個體粒子的量子力學屬性的情況下對其進行觀測和操控的方法,則可實證地說出薛定諤貓究竟是死貓還是活貓,而且為研制超級量子計算機帶來了更大可能,因為量子計算機中最基礎的部分——得到1個量子比特已獲成功。

光子和原子是量子世界中的兩種基本粒子,光子形成可見光或其他電磁波,原子構成物質。他們研究光與物質間的基本相互作用,方法大同小異:維因蘭德利用光或光子來捕捉、控制以及測量帶電原子或者離子。他平行放置兩面極精巧的鏡子,鏡間是真空空腔,溫度接近絕對零度(約-273℃)。一個光子進入空腔后,在兩鏡面間不斷反射。阿羅什則通過發射原子穿過阱,控制并測量了捕獲的光子或粒子。他用一系列電極營造出一個電場囚籠,粒子像是被裝進碗里的玻璃球;然后用激光冷卻粒子,最終有一個最冷的粒子停在了碗底。阿羅什在捕獲單個光子后,引入了特殊的里德伯原子,作為觀測工具,從而得到光子的數據。維因蘭德向碗中發射激光,通過觀測光譜線而得到碗底粒子的數據。

2007年以來,加拿大、美國、德國和中國的科學家都說自己研制出了某種級別的量子計算機,但到今天卻仍無一個投入實用。光鐘更接近現實,因為可操控單個量子,就能按意愿調控量子的振蕩(相當于鐘擺)頻率,越高越精;目前實驗的光鐘,若從宇宙產生起開始計時,至今只誤差5秒。光鐘可使衛星定位和計算太空船的位置更精確……

神話般的量子信息技術

科幻作家克萊頓(著有《侏羅紀公園》、《失去的世界》等)在科幻小說《時間線》中,曾文藝化地描述量子計算,用了“量子多宇宙”、“量子泡沫蟲洞”、“量子運輸”、“量子糾纏態”、“電子的32個量子態”等讓常人倍感高深的說法。其中一些如今正在證實或變現。

如果清朝政府的通信密碼不被日本破譯,那么李鴻章后去日本談判時就很可能是另外一種結局,今天也不會有的問題了。目前世界的密碼系統大都采用單項數學函數的方式,應用了因數分解等數學原理,例如目前網絡上常用的密碼算法。秀爾提出的量子算法利用量子計算的并行性,能輕松破解以大數因式分解算法為根基的密碼體系。量子算法中,量子搜尋算法等也能分分鐘攻破現有密碼體系。可說量子這種技術在現代軍事上的意義不亞于核彈。但同時,量子信息技術也將發展出一種理論上永遠無法破譯的密碼——量子密碼。

保密通信分為加密、接收、解密三個過程,密鑰的保密和不被破解至為關鍵。量子密碼采用量子態作為密鑰,是不可復制的,至少在理論上是無破譯的可能。量子通信是用量子態的微觀粒子攜帶的量子信息作為加密和解密用的密鑰,其密鑰安全性不再由數學計算,而是由微觀粒子所遵循的物理規律來保證,竊密者只有突破物理法則才有可能盜取密鑰(根據海森堡的測不準原理,任何測量都無法窮盡量子的所有信息)。而且量子通信中,量子糾纏態(有共同來源的兩個粒子存在著糾纏關系,似有“心靈感應”,無論距離多遠,一個粒子的狀態發生變化,另一個粒子也發生變化,速度遠遠超過光速,一旦受擾即不再糾纏。愛因斯坦稱這種發生機理至今未解的量子糾纏為“幽靈般的超距作用”)被用于傳輸和保證信息安全,使任何竊密行為都會擾亂傳送密鑰的量子狀態,從而留下痕跡。

主站蜘蛛池模板: 宕昌县| 叶城县| 教育| 宜春市| 陇西县| 泽普县| 射洪县| 郴州市| 南宁市| 宜丰县| 长子县| 天镇县| 习水县| 靖安县| 灌阳县| 清河县| 洞头县| 马关县| 临安市| 广饶县| 剑川县| 长白| 常山县| 石渠县| 萨嘎县| 金秀| 易门县| 正定县| 贡山| 大洼县| 林西县| 长岭县| 黄骅市| 河北区| 册亨县| 陇川县| 南乐县| 教育| 周口市| 滕州市| 马公市|