前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇天文學的理論范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
聞名于世的“諾貝爾獎”,每年一次授予在物理學、化學、生理學或醫學,以及一些人文領域做出卓越貢獻的人,至今已有100多年的歷史。然而,諾貝爾并沒有設立專門的天文學獎項,這導致了20世紀前70年天文學的成就與諾貝爾獎無緣。由于天體物理學的發展,特別是天文觀測所發現的許多物理特性和物理過程是地面上的物理學實驗所無法實現的,宇宙及各種天體已成為物理學的超級實驗室。天體物理學的一些突出成果有力地推進了物理學的發展,這樣,天文學成就獲得“諾貝爾物理學獎”就成為很自然的事了。
諾貝爾獎與天文學的尷尬
諾貝爾獎是以瑞典著名化學家阿爾弗雷德·貝恩哈德·諾貝爾(Alfred Bemhard Nobel,1833年10月21日~1896年12月10日)的部分遺產作為基金創立的。諾貝爾獎包括金質獎章、證書和獎金支票。諾貝爾在他的遺囑中提出,將部分遺產(920萬美元)作為基金,以其利息分設物理、化學、生理或醫學、文學及和平5種獎金,授予世界各國在這些領域內對人類做出重大貢獻的學者。1968年,瑞典中央銀行于建行300周年之際,提供資金增設諾貝爾經濟學獎,并于1969年開始與其它5種獎同時頒發。諾貝爾獎還有一個規定,即只有先前的諾貝爾獎獲得者、諾貝爾獎評委會委員、特別指定的大學教授、諾貝爾獎評委會特邀教授才有資格推薦獲獎的候選人。
由于沒有設立諾貝爾天文學獎,在很多年里,天文學家既沒有推薦權,也不會被人推薦。在這個世界公認的科學界最高獎面前,天文學和天文學家的處境不免有些尷尬。
天文學與物理學相互促進
天文學是研究地球之外天體和宇宙整體的性質、結構、運動和演化的科學,物理學是研究物質世界基本規律的科學。研究各種物質形態都會形成相應的物理學分支,其中包括研究天體形態和特性的天體物理學。很顯然,天文學與物理學的關系十分密切,相互關聯,密不可分。天文學成就可以歸入諾貝爾物理學獎的范圍是在情理之中的,但是要使這個道理得到公認很不容易,花費了好幾十年的時間。
20世紀初,物理學家根據物理學規律提出了許多天文學預言:如廣義相對論預言星光在太陽引力場中的彎曲、水星近日點的運動規律和引力場中的光譜紅移現象;預言中子星、微波背景輻射、星際分子和黑洞的存在等。這些預言在證實的過程中曾走過艱難的歷程甚至彎路,這些偉大的預言推動著天文學家和物理學家們為之奮斗,并且發展了一個個新的分支學科。
天文觀測為物理學基本理論提供了認識地球上實驗室無法得到的物理現象和物理過程的條件。開普勒發現了行星運動三定律以后,牛頓為解釋這些經驗規律才導出萬有引力定律,而在地球上的物理實驗室中是總結不出萬有引力定律的。此后,從對太陽及恒星內部結構和能量來源的研究中獲得了熱核聚變反應的概念;對星云譜線的分析提供了原子禁線理論的線索;從恒星演化理論發展出了元素形成理論。天文學觀測的新發現也給物理學以巨大的刺激和桃戰:中子星的發現推動了致密態物理學的發展,而類星體、星系核、Y射線暴等現象的能量來源迄今還很難從現有的物理學規律中找到答案。
隨著物理學的發展,物理學家必然要把宇宙及各種天體作為物理學的實驗室。物理學家涉足天文學領域的研究成為一種必然。而天文學家也會密切地注視著物理學的發展,以期用物理學原理來解釋宇宙的過去、現在和將來。
一批歷史性天文學成就無緣諾貝爾獎
在1901年開始頒發諾貝爾獎以后,天文學上有很多重大的發現,其科學價值可與獲得諾貝爾物理學獎的一些項目媲美。1912年,美國女天文學家勒維特(Henrietta Swan Leavitt)發現造父變星的周光關系,從而得出一種估計天體距離的方法,這直接導致了河外星系的發現;1911年~1913年,丹麥天文學家赫茨普龍(Ejnar Hertzsprung)和美國天文學家羅素(Henry Norris Russell)各自獨立地得到了恒星光度和光譜型的關系圖,即赫羅圖,赫羅圖在恒星起源和演化的研究中起到了舉足輕重的作用;1918年,美國天文學家沙普利(Harlow Shapley)發現銀河系中心在人馬座方向,糾正了太陽是銀河系中心的錯誤看法;1924年,美國天文學家哈勃(Edwin P.Hubble)確認“仙女座大星云”是銀河系之外的恒星系統,繼而在1929年發現了著名的哈勃定律,證明宇宙在膨脹;1926年,英國天文學家愛丁頓(ArthurStanley Eddington)出版專著《恒星內部結構》,這本書成為恒星結構理論的經典著作。然而,這些成果無一例外地被諾貝爾物理學獎拒之門外。
就像1927年諾貝爾物理學獎得主威爾遜發明的云霧室成為研究微觀粒子的重要儀器一樣,望遠鏡的發展使我們能夠觀測到更遙遠、更暗弱的天體及天體現象。但是沒有一項光學望遠鏡的成就獲獎。其中如美國天文學家海爾(Alan Hale)研制的口徑1.53米、2.54米和5.08米三架大型反射望遠鏡,1930年施密特研制的折反射望遠鏡,以及20世紀90年代研制完成的10米口徑凱克Ⅰ號和Ⅱ號望遠鏡等,它們都代表了天文學觀測手段的歷史性成就。獲諾貝爾物理學獎的與天文相關的課題
隨著物理學的發展,物理學家必然要把宇宙及各種天體作為物理學的實驗室。在宇宙中所發生的物理過程比地球上所能發生的多得多,條件往往更為典型或極端。在地球上做不到的物理實驗,在宇宙中可以觀測到。物理學家涉足天文學領域的研究成為必然。
赫斯發現宇宙線191 1年~1912年,奧地利物理學家赫斯(Victor Francis Hess)用氣球把“電離室”送到距離地面5000多米的高空進行大氣導電和電離的實驗,發現了來自地球之外的宇宙線。1936年,赫斯因此獲得諾貝爾物理學獎。實際上,宇宙線的發現既是一項物理學實驗,更是天文學觀測成果。
貝特提出太陽的能源機制1938年美國物理學家貝特(Hans Bethe)研究核反應理論的過程中,提出太陽和恒星的能量來源于核心的氫核聚變所釋放出的巨大能量。1967年,他因此項研究成果獲得諾貝爾物理學獎。
湯斯開創分子譜線天文學美國物理學家湯斯(Charles Townes)利用氨分子受激發射的方式代替傳統的電子線路放大,研制出了波長為1,25厘米的氨分子振蕩器,簡稱為脈澤。他由地球上的“脈澤”聯想到太空中的分子,預言星際分子的存在。并計算出羥基(-OH)、一氧化碳(CO)等17種星際分子譜線頻率。1963年,年輕的博士后巴瑞特觀測到了預言中的羥基分子譜線,成為轟動全球的20世紀60年代四大發現之一。湯斯由此成為分子譜線天文學的拓荒人和首創者。1964年,他因氨分子振蕩器成功研制而獲該年度的諾貝爾物理學獎,而這項研究的副產品開創了一門新興的天文學科,其科學意義不遜于氨分子振蕩器的研制成功。
物理學家涉足天文學的研究所取得的成果能夠登上諾貝爾獎的大雅之堂,那么天文學家的研究成果,自然也應該被諾貝爾物理學獎容納。
天文學理論首先與諾貝爾獎結緣
天文學家們密切注視著物理學的發展,并在天文學的研究過程中發展了物理學。瑞典天文學家阿爾文首先于1970年用他的“太陽磁流體力學”的出色成果叩開了諾貝爾物理學獎的大門,接著又有錢德拉塞卡的“恒星結構和演化”和福勒等幾人合作的“恒星演化元素形成理論”的獲獎。這三項諾貝爾物理學獎的理論性很強,但都是建立在深入細致的天文觀測基礎上的。光學望遠鏡的長期觀測提供了極其寶貴的資料,所獲得的統計規律給理論研究指明了方向,提供了解決問題的線索。這三個項目也體現了物理學理論和天文學最完美的結合。
首次獲諾貝爾獎的天文學家在太陽上發生的一切物理過程都與磁場和等離子體有關。磁流體力學成為太陽物理最重要的理論基礎。瑞典的阿爾文(Hannes Alfv6n)是磁流體力學的奠基人,他首先應用這個理論研究太陽,因此也稱為太陽磁流體力學。由于這一理論也適用于宇宙中其它天體和星際介質,因而也就成為宇宙磁流體力學。阿爾文因為對宇宙磁流體動力學的建立和發展所做出的卓越貢獻而榮獲1970年度諾貝爾物理學獎,這是歷史上第一次以天文學研究成果獲諾貝爾物理學獎。
印度裔美國天文學家錢德拉塞卡奮斗終生的成就在錢德拉塞卡(Subrahmanyan Chandrasekhar)還是劍橋大學研究生的時候,就獲得了“白矮星質量上限”這一研究成果。這一成果意味著超過白矮星質量極限的老年恒星的演化歸宿可能是密度比白矮星更大的中子星或者黑洞,其意義不同尋常。但由于受到權威學者錯誤的壓制,這一成果未能得到進一步深入研究。在這之后,他仍幾十年如一日地研究恒星結構和演化理論。1983年,他在73歲高齡時以特別豐碩的成就獲得該年度的諾貝爾物理學獎。
B2FH元素形成理論宇宙中存在的各種元素是怎樣來的?這是個天文學家應該回答、卻很難回答的問題。但是由天文學家霍伊爾(Fred Hoyle)、伯比奇(G.Geoffrey Burbidge)夫婦和核物理學家福勒(William Fowler)合作完成的研究課題卻揭示了這個自然之謎。人們按論文作者姓氏字母順序稱之為B2FH元素形成理論。這篇論文解決了在恒星中產生各種天然元素的難題,被視為經典科學論文。這是天文學家和核物理學家合作研究天文學重大課題的典型例子。
1983年,上述論文的第三作者福勒獲得了諾貝爾物理學獎,這個結果顯得很不公平,備受質疑。福勒的貢獻的確很大,但是另外三位天文學家的貢獻也不是可有可無的,特別是霍伊爾作為這個研究課題的提出者和組織者,其前期的研究已經提出“恒星內部聚變產生元素”的創新思想,把他排除在諾獎之外很有些匪夷所思。
射電天文學成為諾貝爾獎的搖籃
射電天文學是20世紀30年展起來的天文學新分支,其特點是利用射電天文望遠鏡觀測天體的無線電波段的輻射。和光學望遠鏡400多年的歷史相比,它僅有幾十年歷史,但卻很快就步入了鼎盛時期。20世紀60年代射電天文學的“四大發現”,即脈沖星、星際分子、微波背景輻射、類星體,成為20世紀中最耀眼的天文學成就。射電天文已成為重大天文發現的發祥地和諾貝爾物理學獎的搖籃。
賴爾的突破物理學中因發明新器件而獲諾貝爾物理學獎的事例屢見不鮮。然而在20世紀前幾十年當中,光學天文望遠鏡的發展很快,導致了不少重要的天文發現,但卻沒有一項得獎。1974年,英國劍橋大學的賴爾(Martin Ryle)教授因發明綜合孔徑射電望遠鏡而獲得了諾貝爾物理學獎,這是天文學家終于實現因研制天文觀測設備而獲諾獎的突破。射電望遠鏡開辟了觀測的新波段,但是剛剛發展起來的射電天文十分幼稚,最大的問題是空間分辨率很低,且不能給出射電源的圖像。1952年,賴爾提出綜合孔徑望遠鏡理論,這是一種化整為零的射電望遠鏡,用兩面或多面小天線進行多次觀測就可以達到大天線所具有的分辨率和靈敏度。而且,還能得到所觀測的天區的射電圖像。1971年,劍橋大學建成的等效直徑為5千米的綜合孔徑望遠鏡,其分辨率已和大型光學望遠鏡相當,獲得了一大批射電源的圖像資料。
休伊什和貝爾發現脈沖星脈沖星的發現證實了中子星的存在。中子星具有和太陽相當的質量,但半徑只有約10千米。因此具有非常高的密度,是一種典型的致密星。中子星還具有超高壓、超高溫、超強磁場和超強輻射的物理特性,成為地球上不可能有的極端物理條件下的空間實驗室。它不僅為天文學開辟了一個新的領域,而且對現代物理學發展也產生了重大影響,導致了致密物質物理學的誕生。英國劍橋大學的天文學教授休伊什(AntonyHewish)和他的研究生喬絲琳·貝爾(Jocelyn BellBurnell)女士一起發現了脈沖星。休伊什因發現脈沖星并證認其為中子星而榮獲1974年的諾貝爾物理獎是當之無愧的,但貝爾博士未能和休伊什一起獲得諾貝爾獎卻是一件憾事,目前天文學家公認她是發現脈沖星的第一人。
彭齊亞斯和威爾遜發現宇宙微波背景輻射1963年初,彭齊亞斯(Arno Allan Penzias)和威爾遜(Robert Woodrow Wilson)把一臺衛星通訊接收設備改造為射電望遠鏡進行射電天文學研究。在觀測過程中意外發現了多余的3.5開溫度的輻射。這種輻射被確認是宇宙大爆炸時的輻射殘余,成為宇宙大爆炸理論的重要觀測證據。由此,他們獲得了1978年度的諾貝爾物理學獎。彭齊亞斯和威爾遜發現宇宙微波背景輻射,所獲得的黑體譜并不精確,而且他們得到的微波背景輻射的空間分布是各向同性的,這與大爆炸宇宙學的理論有著明顯的差別。
赫爾斯和泰勒發現射電脈沖雙星繼1974年休伊什教授因發現脈沖星而獲得諾貝爾物理學獎之后,1993年美國普林斯頓大學的赫爾斯(RussellA.Hulse)和泰勒(Joseph H.Taylor)兩位教授又因發現射電脈沖雙星而共同獲得該年度諾貝爾物理學獎,引起了全世界的轟動。他們發現的脈沖雙星系統之所以重要,不僅因為是第一個,還因為它是軌道橢率很大的雙中子星系統,成為驗證引力輻射存在的空間實驗室。他們經過近20年堅持不懈的努力,上千次的觀測,終于以無可爭辯的觀測事實,間接證實了引力波的存在,開辟了引力波天文學的新領域。
新世紀天文觀測再續輝煌
觀測是天文學研究的主要方法。觀測手段越多、越好,所能得到的信息就越豐富。進入21世紀僅僅10余年,已有4個天文項目獲得了諾貝爾物理學獎,分別屬于X射線、中微子、射電和光學觀測研究領域。
賈科尼創立x射線天文學
1901年,倫琴(Wilhelm Conrad R6ntgen)因為發現X射線榮獲諾貝爾物理學獎。時隔102年,X射線天文學的創始人里卡爾多·賈科尼(Rieeardo Giaeeoni)又獲諾獎殊榮。由于地球大氣對X射線和Y射線的強烈吸收,只能把探測器送到大氣層外才能接收天體的X射線和Y射線輻射。20世紀30年代以后,特別是到了90年代,空間探測的發展使得X射線天文學得到了發展,實現了天文學觀測研究的又一次飛躍。美國天文學家賈科尼由于對X射線天文學的突出貢獻榮獲2002年度諾貝爾物理學獎。
賈科尼對X射線天文學的貢獻是全面的,瑞典皇家科學院發表的新聞公報把他的貢獻歸納為“發明了一種可以放置在太空中的探測器,從而第一次探測到了太陽系以外的X射線源,第一次證實宇宙中存在著隱蔽的X射線背景輻射,發現了可能來自黑洞的X射線,他還主持建造了第一臺X射線天文望遠鏡,為觀察宇宙提供了新的手段,為x射線天文學奠定了基礎”。賈科尼被稱為“X射線天文學之父”當之無愧。
戴維斯和小柴昌俊發現太陽中微子中微子是組成自然界的最基本的粒子之一,中微子不帶電,質量只有電子的百萬分之一,幾乎不與任何物質發生作用,因此極難探測。理論推測,在太陽核心發生的氫核聚變為氦的反應中,每形成一個氦原子核就會釋放出2個中微子。太陽每秒鐘消耗5,6億噸氫,要釋放1.4×1038個中微子。太陽究竟會不會發射如此多的中微子?只能由觀測來回答。
美國物理學家戴維斯(Raymond Davis)是20世紀50年代唯一敢于探測太陽中微子的科學家。他領導研制的中微子氯探測器,放置在地下深1500米的一個廢棄金礦里。在30年漫長的探測中,他們共發現了來自太陽的約2000個中微子,平均每個月才探測到幾個中微子。而日本東京大學的小柴昌?。∕asatoshi Koshiba)教授創造了另一種中微子探測器。探測器放在很深的礦井中,并于1983年開始探測,1996年擴建,探測到了來自太陽的中微子。1987年,在鄰近星系大麥哲倫云中出現了一次超新星爆發(SNl987A),理論預測在超新星爆發過程中會產生數量驚人的中微子。令人興奮不已的是,他們成功地探測到了12個中微子。戴維斯和小柴昌俊因為成功地探測到中微子而榮獲2002年度的諾貝爾物理學獎。
一. 天文學研究的歷程
朱熹對天文現象的思考很早就已開始。據朱熹門人黃義剛“癸丑(1193年,朱熹63歲)以后所聞”和林蘷孫“丁巳(1197年,朱熹67歲)以后所聞”,朱熹曾回憶說:“某自五、六歲,便煩惱道:‘天地四邊之外,是什么物事?’見人說四方無邊,某思量也須有個盡處。如這壁相似,壁后也須有什么物事。其時思量得幾乎成病。到而今也未知那壁后是何物?”[ ]可見,朱熹從小就關心天文,直到晚年仍對此難以忘懷,并孜孜以求。
然而,朱熹在其早期的學術生涯中,并沒有進行天文學的研究。朱熹早年除讀儒家經典外,“無所不學,禪、道文章,楚辭、詩、兵法,事事要學”[ ]。紹興三十年(1160年,朱熹30歲),朱熹正式拜二程的三傳弟子李侗為師,開始潛心于儒學,并接受李侗以“默坐澄心”于“分殊”上體認“理一”的思想。
據《朱文公文集》以及當今學者陳來先生所著《朱子書信編年考證》[ ],朱熹最早論及天文學當在乾道七年(1171年,朱熹41歲)的《答林擇之》,其中寫道:“竹尺一枚,煩以夏至日依古法立表以測其日中之景,細度其長短。”[ ]
測量日影的長度是古代重要的天文觀測活動之一。最簡單的方法是在地上直立一根長八尺的表竿,通過測量日影的長短來確定節氣;其中日影最短時為夏至,最長時為冬至,又都稱為“日至”。與此同時,這種方法還用于確定“地中”?!吨芏Y?地官》載:“以土圭之法測土深,正日景以求地中。……日至之景,尺有五寸,謂之地中?!币馑际?在夏至日中午測得日影為一尺五寸的地方,此地便是“地中”。而且,從“地中”向北,每一千里則影長增一寸;向南,每一千里則影長減一寸。這就是《周髀算經》所謂“周髀長八尺,勾之損益寸千里”。這一說法到南朝以后受到懷疑;唐朝的一行和南宮說通過不同地區日影的測量,進一步予以糾正。朱熹要其弟子林擇之協助測量日影,顯然是要比較不同地區日影的長短,其科學精神可見一斑。
在同年的《答蔡季通》中。朱熹寫道:“歷法恐亦只可略說大概規模,蓋欲其詳,即須仰觀俯察乃可驗。今無其器,殆亦難盡究也?!盵 ]
蔡季通,即蔡元定(1135~1198年);建陽(今屬福建)人,學者稱西山先生;精于天文、地理、呂律、象數,著作有《律呂新書》、《大衍詳說》等;為朱熹“四大弟子( 蔡元定、黃干、劉爚、陳淳)”之首。蔡元定的年齡僅比朱熹小5歲,并在天文學等科學上有所造詣,很受朱熹的器重。從以上所引《答蔡季通》可知,當時朱熹正與蔡元定討論天文歷法,并且認為,研究歷法必須用科學儀器進行實際的天文觀測。
淳熙元年(1174年,朱熹44歲),朱熹在《答呂子約》中寫道:“日月之說,沈存中筆談中說得好,日食時亦非光散,但為物掩耳。若論其實,須以終古不易者為體,但其光氣常新耳。”[ ]顯然,朱熹在此前已研讀過北宋著名科學家沈括的《夢溪筆談》,并對沈括的有關天文學的觀點進行分析。胡道靜先生認為,在整個宋代,朱熹是最最重視沈括著作的科學價值的唯一的學者,是宋代學者中最熟悉《夢溪筆談》內容并能對其科學觀點有所闡發的人。[ ]
淳熙十三年(1186年,朱熹56歲),朱熹在《答蔡季通》中寫道:“《星經》紫垣固所當先,太微、天市乃在二十八宿之中,若列于前,不知如何指其所在?恐當云在紫垣之旁某星至某星之外,起某宿幾度,盡某宿幾度。又記其帝坐處須云在某宿幾度,距紫垣幾度,赤道幾度,距垣四面各幾度,與垣外某星相直,及記其昏見,及昏旦夜半當中之星。其垣四面之星,亦須注與垣外某星相直,乃可易曉?!缎墙洝房筛度绠吰涫路?甚愿早見之也。近校得《步天歌》頗不錯,其說雖淺而詞甚俚,然亦初學之階梯也?!盵 ]可見,當時朱熹正與蔡元定一起研究重要的天文學經典著作《星經》和以詩歌形式寫成的通俗天文學著作《步天歌》,并就如何確定天空中恒星的位置問題進行討論,其中涉及三垣二十八宿星象體系。
同年,朱熹在《答蔡伯靜》中寫道:“天經之說,今日所論乃中其病,然亦未盡。彼論之失,正坐以天形為可低昂反復耳。不知天形一定,其間隨人所望固有少不同處,而其南北高下自有定位,政使人能入于彈圓之下以望之,南極雖高,而北極之在北方,只有更高于南極,決不至反入地下而移過南方也。但入彈圓下者自不看見耳。蓋圖雖古所創,然終不似天體,孰若一大圓象,鉆穴為星,而虛其當隱之規,以為甕口,乃設短軸于北極之外,以綴而運之,又設短軸于南極之北,以承甕口,遂自甕口設四柱,小梯以入其中,而于梯末架空北入,以為地平,使可仰窺而不失渾體耶?”[ ]在這里,朱熹設想了一種可進入其中觀看天象的龐大的渾天儀。
淳熙十四年(1187年,朱熹57歲),朱熹在《答廖子晦》中寫道:“日之南北雖不同,然皆隨黃道而行耳。月道雖不同,然亦常隨黃道而出其旁耳。其合朔時,日月同在一度;其望日,則日月極遠而相對;其上下弦,則日月近一而遠三。如日在午,則月或在卯,或在酉之類是也。故合朔之時,日月之東西雖同在一度,而月道之南北或差遠,于日則不蝕?;蚰媳彪m亦相近,而日在內,月在外,則不蝕。此正如一人秉燭,一人執扇,相交而過。一人自內觀之,其兩人相去差遠,則雖扇在內,燭在外,而扇不能掩燭。或秉燭者在內,而執扇在外,則雖近而扇亦不能掩燭。以此推之,大略可見。”[ ]在這里,朱熹對月亮盈虧變化的原因作了探討。
淳熙十六年(1189年,朱熹59歲),朱熹在《答蔡季通》中寫道:“極星出地之度,趙君云福州只廿四度,不知何故自福州至此已差四度,而自此至岳臺,卻只差八度也。子半之說尤可疑,豈非天旋地轉,閩浙卻是天地之中也耶?”[ ]在這里,朱熹試圖通過比較各地北極星的高度及其與地中岳臺的關系,以證明大地的運動。
朱熹在一生中最后的十年里,在天文學研究上下了較多的功夫,并取得了重要的科學成就。南宋黎靖德所編《朱子語類》卷一“理氣上?太極天地上”和卷二“理氣下?天地下”編入大量朱熹有關天文學的言論,其中大都是這一時期朱熹門人所記錄的。例如:《朱子語類》卷二朱熹門人陳淳“庚戌(1190年,朱熹60歲)、己未(1199年,朱熹69歲)所聞”:“天日月星皆是左旋,只有遲速。天行較急,一日一夜繞地一周三百六十五度四分度之一,而又進過一度。日行稍遲,一日一夜繞地恰一周,而於天為退一度。至一年,方與天相值在恰好處,是謂一年一周天。月行又遲,一日一夜繞地不能匝,而於天常退十三度十九分度之七。至二十九日半強,恰與天相值在恰好處,是謂一月一周天。月只是受日光。月質常圓,不曾缺,如圓球,只有一面受日光。望日日在酉,月在卯,正相對,受光為盛。天積氣,上面勁,只中間空,為日月來往。地在天中,不甚大,四邊空?!盵 ]
《朱子語類》的其它卷中也有此類記錄。例如:《朱子語類》卷二十三黃義剛“癸丑(1193年,朱熹63歲)以后所聞”:安卿問北辰。曰:“北辰是那中間無星處,這些子不動,是天之樞紐。北辰無星……?!绷x剛問:“極星動不動?”曰:“極星也動。只是它近那辰后,雖動而不覺?!袢艘怨苋ジQ那極星,見其動來動去,只在管里面,不動出去。向來人說北極便是北辰,皆只說北極不動。至本朝人方去推得是北極只是北辰頭邊,而極星依舊動。又一說,那空無星處皆謂之辰……?!庇衷?“天轉,也非東而西,也非循環磨轉,卻是側轉?!绷x剛言:“樓上渾儀可見?!痹?“是?!薄衷?“南極在地下中處,南北極相對。天雖轉,極卻在中不動?!盵 ]
《朱文公文集》卷七十二朱熹所著《北辰辨》(大約寫成于1196年,朱熹66歲)以及卷六十五朱熹所注《尚書》之《堯典》、《舜典》(大約寫成于1198年,朱熹68歲)都包含有豐富的天文學觀點。《北辰辨》是朱熹專門討論天球北極星座的論文;在所注的《堯典》中,朱熹討論了當時天文學的歲差、置閏法等概念;在所注《舜典》中討論了早期的渾天說、渾天儀的結構,并詳細記錄了當時的渾天儀結構。
這一時期朱熹所編《楚辭集注》(成書于1195年,朱熹65歲)之《天問》中也有一些注釋反映了他在天文學方面的研究和造詣。
二. 天文學的成就
就朱熹研究天文學的方法而言,其最根本的研究方法是[ ]:
其一,細心觀察各種天文現象。朱熹是重視親身觀察、善于觀察的人。他經常運用儀器觀察天文現象;并運用觀察所得驗證、反駁或提出各種見解。
其二,用“氣”、“陰陽”等抽象概念解釋天文現象。朱熹所采用的這一方法與中國古代科學家普遍采用的研究方法是一致的。
其三,運用推類獲取新知。朱熹經常運用“以類而推”的方法,用已知的東西、直觀的東西,對天文現象進行類推解釋。
其四,闡發前人的天文學研究成果。朱熹研讀過包括沈括《夢溪筆談》在內的大量科學論著,對前人的天文學觀點均予以評述,并提出自己的看法。
從現代科學的角度看,朱熹的天文學研究方法,固然有其不足之處,這主要是由于古代科學所處的階段而導致的。在古代科學的范疇中,朱熹的天文學研究方法應當屬于合理。更為重要的是,朱熹運用這些方法在天文學上取得了重要的成就。
朱熹在天文學方面的科學成就主要反映在他最后十年里有關的言論中。概括起來主要有三個方面:
第一,提出了以“氣”為起點的宇宙演化學說。朱熹曾經說:“天地初間只是陰陽之氣。這一個氣運行,磨來磨去,磨得急了便拶許多渣滓;里面無處出,便結成個地在中央。氣之清者便為天,為日月,為星辰,只在外,常周環運轉。地便只在中央不動。不是在下?!盵 ]這里描繪了一幅宇宙演化途徑的圖景。
在朱熹看來,宇宙的初始是由陰陽之氣構成的氣團。陰陽之氣的氣團作旋轉運動;由于內部相互磨擦發生分化;其中“清剛者為天,重濁者為地”[ ],重濁之氣聚合為“渣滓”,為地,清剛之氣則在地的周圍形成天和日月星辰。朱熹還明確說:“天地始初混沌未分時,想只有水火二者。水之滓腳便成地。今登高而望,群山皆為波浪之狀,便是水泛如此。只不知因什么時凝了。初間極軟,后來方凝得硬?!畼O濁便成地,火之極輕便成風霆雷電日星之屬?!盵 ]他根據直觀的經驗推斷認為,大地是在水的作用下通過沉積而形成的,日月星辰是由火而形成的。
將宇宙的初始看作是運動的氣,這一思想與近代天文學關于太陽系起源的星云說有某些相似之處。1755年,德國哲學家康德提出了太陽系起源的星云說;1796年,法國天文學家拉普拉斯也獨立地提出星云說。星云說認為,太陽系內的所有天體都是由同一團原始星云形成的。然而,在他們500多年之前,朱熹就提出了類似之說;盡管尚缺乏科學依據和定量的推算,但其通過思辯而獲得的結果則是超前的。
對此,英國科學史家梅森在其《自然科學史》一書中予以記述:“宋朝最出名的新儒家是朱熹。他認為,在太初,宇宙只是在運動中的一團渾沌的物質。這種運動是漩渦的運動,而由于這種運動,重濁物質與清剛物質就分離開來,重濁者趨向宇宙大旋渦的中心而成為地,清剛者則居于上而成為天?!盵 ]
第二,提出了地以“氣”懸空于宇宙之中的宇宙結構學說。朱熹贊同早期的渾天說,但作了重大的修改和發展。早期的渾天說認為:“天如雞子,地如雞中黃,孤居于天內,天大而地小。天表里有水,天地各乘氣而立,載水而行”[ ]但是,當天半繞地下時,日月星辰如何從水中通過?這是困擾古代天文學家的一大難題。朱熹不贊同地載水而浮的說法,他說:“天以氣而依地之形,地以形而附天之氣。天包乎地,地特天中之一物爾。天以氣而運乎外,故地搉在中間,隤然不動。”[ ]這就是說,地以“氣”懸空在宇宙之中。
至于地如何以“氣”懸空在宇宙中央,朱熹說:“天運不息,晝夜輾轉,故地搉在中間。使天有一息之停,則地須陷下。惟天運轉之急,故凝結得許多渣滓在中間?!盵 ]又說:“地則氣之渣滓,聚成形質者;但以其束于勁風旋轉之中,故得以兀然浮空,甚久而不墜耳?!盵 ]朱熹認為,宇宙中“氣”的旋轉使得地能夠懸空于宇宙中央。朱熹的解釋克服了以往天文學家關于宇宙結構學說的弱點,把傳統的渾天說發展到了一個新水平。[ ]
關于地之外的天,朱熹說:“天之形,……亦無形質?!祗w,而實非有體也?!盵 ]“天無體,只二十八宿便是天體?!盵 ]又說:“星不是貼天。天是陰陽之氣在上面”;“天積氣,上面勁,只中間空,為日月來往。地在天中,不甚大,四邊空,”[ ]這顯然是吸取了傳統宣夜說所謂“天了無質,……日月眾星,自然浮生虛空之中,其行無止,皆須氣也”[ ]的思想。
第三,提出了天有九重和天體運行軌道的思想。朱熹認為,屈原《天問》的“圜則九重”就是指“九天”,指天有九重。事實上,在朱熹之前,關于“九天”的說法可見《呂氏春秋?有始覽》:中央曰鈞天,東方曰蒼天,東北曰變天,北方曰玄天,西北曰幽天,西方曰顥天,西南曰朱天,南方曰炎天,東南曰陽天;后來的《淮南子?天文訓》等也有類似的說法;直到北宋末年洪興祖撰《楚辭補注》,其中《天文章句》對“九天”的解釋是:東方皞天,東南方陽天,南方赤天,西南方朱天,西方成天,西北方幽天,北方玄天,東北方變天,中央鈞天。顯然,這些解釋都不包括天有九重的思想。
朱熹則明確地提出天有九重的觀點,并且還說“自地之外,氣之旋轉,益遠益大,益清益剛,究陽之數,而至于九,則極清極剛,而無復有涯矣”[ ];同時,朱熹贊同張載所謂“日月五星順天左旋”的說法。他進一步解釋說:“蓋天行甚健,一日一夜周三百六十五度四分度之一,又進過一度。日行速,健次于天,一日一夜周三百六十五度四分度之一,正恰好。比天進一度,則日為退一度。二日天進二度,則日為退二度。積至三百六十五日四分日之一,則天所進過之度,又恰周得本數;而日所退之度,亦恰退盡本數,遂與天會而成一年。月行遲,一日一夜三百六十五度四分度之一行不盡,比天為退了十三度有奇。進數為順天而左,退數為逆天而右?!盵 ]《朱子語類》卷二朱熹的門人在闡釋所謂“天左旋,日月亦左旋”時說:“此亦易見。如以一大輪在外,一小輪載日月在內,大輪轉急,小輪轉慢。雖都是左轉,只有急有慢,便覺日月似右轉了?!敝祆滟澩苏f。[ ]
對此,英國著名科學史家李約瑟說:“這位哲學家曾談到‘大輪’和‘小輪’,也就是日、月的小‘軌道’以及行星和恒星的大‘軌道’。特別有趣的是,他已經認識到,‘逆行’不過是由于天體相對速度不同而產生的一種視現象?!盵 ]因此李約瑟認為,不能匆忙假定中國天文學家從未理解行星的運動軌道。
在天文學研究中,朱熹除了提出以上新見外,還對沈括有關天文學的觀點做過詳細的闡述。例如:沈括曾說:“月本無光,猶銀丸,日耀之乃光耳。光之初生,日在其傍,故光側,而所見才如鉤;日漸遠,則斜照,而光稍滿。如一彈丸,以粉涂其半,側視之,則粉處如鉤;對視之,則正圓?!盵 ]朱熹贊同此說,并接著說:“以此觀之則知月光常滿,但自人所立處視之,有偏有正,故見其光有盈有虧?!盵 ]他還說:“月體常圓無闕,但常受日光為明。初三、四是日在下照,月在西邊明,人在這邊望,只見在弦光。十五、六則日在地下,其光由地四邊而射出,月被其光而明。……月,古今人皆言有闕,惟沈存中云無闕?!盵 ]
三. 對后世的影響
中國古代的天文學大致包括宇宙結構理論和歷法兩大主要部分,尤以歷法最為突出。宇宙結構理論自漢代形成蓋天說、渾天說和宣夜說之后,也經歷了不斷的發展,主要表現為占主導地位的渾天說不斷吸取各家學說之長而逐步得到完善。
朱熹的天文學研究側重于對宇宙結構理論的研究。他通過自己的天文觀測和科學研究,以渾天說為主干,吸取了蓋天說和宣夜說的某些觀點,提出了較以往更加完善的宇宙結構理論,把古代的渾天說推到一個新的階段,這應當是朱熹對于古代天文學發展的一大貢獻。
但是,由于朱熹的天文學研究只是專注于宇宙的結構,對于當時在天文觀測和歷法方面的研究進展關注不夠,在這些方面的研究稍顯不足。因此,他的宇宙結構理論在某些具體的細節方面,尤其是定量方面,尚有一些不足之處,有些見解和解釋是欠妥當的。
然而,他畢竟對宇宙結構等天文學問題作了純科學意義上的研究,代表了宋代以至后來相當長一段時期中國古代天文學在宇宙結構理論研究方面的水平。而且,朱熹的宇宙結構理論在后來直至清代一直受到了不少學者的重視和引述。
朱熹之后宋末的重要學者王應麟(1223~1296年,字伯厚,號深寧居士)撰《六經天文編》六卷,記述了儒家經典中大量有關天文學方面的重要論述,《四庫全書?六經天文編》“提要”說:“是編裒六經之言天文者,以易、書、詩所載為上卷,周禮、禮記、春秋所載為下卷?!痹撝饕灿浭隽酥祆涞脑S多有關天文學方面的論述。
元代之后科舉考試以“四書五經”為官定教科書。其中《尚書》以蔡沈的《書集傳》為主。蔡沈(1167~1230年,字仲默,號九峰)曾隨其父蔡元定從學于朱熹。他的《書集傳》是承朱熹之命而作,其中包含了朱熹所注《尚書》之《堯典》、《舜典》等內容,涉及不少有關天文學方面的論述。另有元代學者史伯璿(生卒不詳)著《管窺外篇》;《四庫全書?管窺外篇》“提要”說:該書中“于天文、歷學、地理、田制言之頗詳,多能有所闡發?!痹谡摷疤煳膶W時,該書對朱熹的言論多有引述,并認為“天以極健至勁之氣運乎外,而束水與地于其中”。這與朱熹的宇宙結構理論是一致的。
明初的胡廣等纂修《性理大全》,其中輯錄了大量朱熹有關天文學的論述。明末清初的天文學家游藝(生卒不詳,字子六,號岱峰)融中西天文學于一體,撰天文學著作《天經或問》,后被收入《四庫全書》,并流傳于日本。該書在回答地球何以“能浮空而不墜”時說:“天虛晝夜運旋于外,地實確然不動于中……天裹著地,運旋之氣升降不息,四面緊塞不容展側,地不得不凝于中以自守也。”這里吸取了朱熹關于氣的旋轉支撐地球懸于空中的宇宙結構理論;在解釋地震的原因時,該書又明確運用了朱熹的這一觀點,說:“地本氣之渣滓聚成形質者,束于元氣旋轉之中,故兀然浮空而不墜為極重亙中心以鎮定也?!痹谡摷叭赵挛逍堑倪\行方向和速度時,該書說道:“日月之行,宋儒言之甚詳”,并且還直接引述朱熹關于五星運行方向和速度的觀點予以說明。
清代著名學者李光地(1642~1718年,字晉卿,號榕村)曾奉命主編《朱子大全》,其中“卷四十九理氣一”有“總論、太極、天地、陰陽、時令”,“卷五十理氣二”有“天文、天度、地理、雷電、風雨雪雹霜露”,收錄了朱熹有關天文學的不少論述。李光地所著的《歷象本要》引述了朱熹所謂“地在中央不動,不是在下”,“天包乎地”以及“天有九重”等,用以說明朱熹的天文學思想中包含了西方天文學有關宇宙結構的知識[ ]。他在所撰的《理氣》篇說:“朱子言天,天不宜以恒星為體,當立有定之度數記之。天乃動物,仍當于天外立一太虛不動之天以測之,此說即今西歷之宗動天也。其言九層之天。近人者最和暖故能生人物。遠得一層,運轉得較緊似一層。至第九層則緊不可言。與今西歷所云九層一 一吻合?!盵 ]他的《御定星歷考原》六卷,也引述了朱熹有關宇宙結構的言論,并且認為,朱熹所說的“天包乎地,地特天中之一物爾”就是指“天渾圓地亦渾圓”,而與西方天文學的宇宙結構理論相一致。
李光地與被譽為清初“歷算第一名家”的梅文鼎(1633~1721年,字定九,號勿庵)[ ]交往甚密,并且對當時的西方科學都持“西學中源”說。梅文鼎在所著《歷學疑問》中多處引用朱熹有關宇宙結構的言論。該書認為,朱熹已經具有西方天文學所謂“動天之外有靜天”、“天有重數”和“以輪載日月”的觀點,并且說:“朱子以輪載日月之喻,兼可施諸黃、赤,與西說之言層次者實相通貫?!盵 ]
除此之外,清代還有黃鼎(生卒不詳)的《天文大成管窺輯要》八十卷,其中也包括朱熹有關天文學的不少論述。
朱熹是古代的大哲學家,代表了中國古代哲學發展的一座高峰。也許正是這個原因,他在天文學上所取得的成就一直沒有能引起人們足夠的注意。但是,這并不能否認他在天文學上確實做出過卓越的貢獻,他的宇宙結構理論對后世產生過重大的影響。
注釋:
[ ] 李約瑟:《中國科學技術史》第四卷《天學》,北京:科學出版社1975年版,第2頁。
[ ] 〔宋〕黎靖德編:《朱子語類》,北京:中華書局1986年版,卷第九十四。
[ ] 《朱子語類》,卷第一百四。
[ ] 陳來:《朱子書信編年考證》,上海人民出版社1989年版。
[ ] 《答林擇之》,《晦庵先生朱文公文集》(四部叢刊初編),以下簡稱《文集》,卷四十三。
[ ] 《答蔡季通》,《文集》續集卷二。
[ ] 《答呂子約》,《文集》卷四十七。
[ ] 胡道靜:《朱子對沈括科學學說的鉆研與發展》,《朱熹與中國文化》,學林出版社1989年版。
[ ] 《答蔡季通》,《文集》卷四十四。
[ ] 《答蔡伯靜》,《文集》續集卷三。
[ ] 《答廖子晦》,《文集》卷四十五。
[ ] 《答蔡季通》,《文集》續集卷二。
[ ] 《朱子語類》,卷第二。
[ ] 《朱子語類》,卷第二十三。
[ ] 樂愛國、高令印《朱熹格物致知論的科學精神及其歷史作用》,《廈門大學學報》,1997年第1期。
[ ] 《朱子語類》,卷第一。
[ ] 《朱子語類》,卷第一。
[ ] 《朱子語類》,卷第一。
[ ] 梅森:《自然科學史》,上海譯文出版社1980年版,第75頁。
[ ] 《晉書?天文志上》。
[ ] 《朱子語類》,卷第一。
[ ] 《朱子語類》,卷第一。
[ ] 朱熹:《楚辭集注》,上海古籍出版社1979年版,第51頁。
[ ] 杜石然等:《中國科學技術史稿》(下),科學出版社1982年版,第106頁。
[ ] 朱熹:《楚辭集注》,第51頁。
[ ] 《朱子語類》,卷第二。
[ ] 《朱子語類》,卷第二。
[ ] 《晉書?天文志上》。
[ ] 朱熹:《楚辭集注》,第51頁。
[ ] 《朱子語類》,卷第二。
[ ] 《朱子語類》,卷第二。
[ ] 李約瑟:《中國科學技術史》第4卷,科學出版社1975年版,第547頁。
[ ] 沈括:《夢溪筆談》卷七《象數一》。
[ ] 朱熹:《楚辭集注》,第53頁。
[ ] 《朱子語類》,卷第二。
[ ] 樂愛國:《李光地的中西科技觀述評》,載《李光地研究》,廈門大學出版社1993年版。
[ ] 《榕村語錄》卷二十六《理氣》
威廉姆斯:大多數科學成就都是在意料之外偶然發現的?;蛟S,我們最終能夠收到他們回復的信號,但我表示強烈的懷疑!對信號進行巡天搜索似乎更重要,那也許會于偶然間找到外星信號。當然,人類可能永遠不會發現任何來自地外的信號,但重要的是我們擁有那份探索的好奇心。即使我們最終沒有接收到任何回音,勇于探索宇宙卻是人類開放態度的重要體現。所以,我堅決支持“地外文明搜尋”(Search for extraterrestrial intelligence,SETI)項目為尋找地外生命所進行的嘗試。同時,我也要承認,發現地外生命的可能性微乎其微。這兩者并不相互矛盾。延展我們在宇宙中的探索范圍是人類的使命,因此,我們必須不斷地搜尋、搜尋、再搜尋,永不停息。
《中國國家天文》:現代天文學首先在歐洲而非其它地區發展起來,您如何看待這樣的事實?您認為這是歷史的必然還是偶然?與其它文明相比,現在西方在發展天文學方面擁有怎樣的優勢?
威廉姆斯:現代天文學可能最早是在歐洲發展起來的,但毫無疑問,古天文學起源于亞洲,特別是中國,因為那時亞洲擁有更好的社會和政治組織結構??茖W的發展需要有良好的教育基礎體系和技術。就教育和技術而言,在文藝復興時期,歐洲恰好比亞洲先進,因此,現代天文學在那時取得了飛速發展。是歷史的偶然嗎?答案是否定的,那要歸功于彼時歐洲興起的向之外擴展知識的傾向。但是,這場啟蒙運動并沒有發生在同時期的明代中國。
目前,西方世界有這樣一種趨勢,傾向于支持那些不同于現有社會思想和宗教信條的想法。這種開放的環境對于創造力和新認識的產生十分關鍵?,F行的西方教育體系比較容易接受新觀念和新技術。東方社會,例如中國,對教育和技術的資源投人令我印象深刻,所以中國的科技發展正在快速追趕西方的腳步。
《中國國家天文》:在我們的雜志上,有作者將IAU稱為“天文學家的國際組織”。人們通常認為天文學很專業,很難參與。您是否曾經與業余科學家,特別是那些科學家圈子外的思考理論問題的人討論過?作為前任IAU主席,您是否支持民間科學家進行理論思考?
威廉姆斯:我認為每個人都可以平等地思考。如果民間科學家的想法有證據支持,我相信那可能是有價值的。像IAU這樣的專業組織并不是產生好主意的必要條件。生命的智慧存在于任何有著開放意識和思想,并樂于探索宇宙和地球的那些人之中。
《中國國家天文》:天文現象有時被一些人用來鼓吹“末日來臨”,例如“2012預言”。您對那些末日論者要說些什么?您是否相信一些宗教所說的“最后的審判”?
威廉姆斯:科學所能解決的是我們擁有事實和證據的那部分現象。如果某個事件沒有確鑿的證據,那么它就不能納入到科學研究的范疇。沒有證據的任何推論都是基于哲學或者是宗教,那是個人信仰。就個人而言,我對許多世界上有組織的宗教并無信仰,但我很贊賞他們所傳遞的良好的道德準則。至于“最后的審判”,我認為那很難成為令人接受的事實。它與我所認知的地球生命及其進化史格格不入。立足腳下,好好生活,與人互敬互愛,這才是人類最好的選擇。
《中國國家天文》:作為一本天文科普雜志的編輯,經常有人問我們天文對日常生活有什么影響。有些讀者認為,雖然天文學在古代的日常生活中非常重要,但現在已經逐漸淡出了人們的生活。您是否同意這樣的說法?如何使天文學與人類日常生活的關系更緊密?
威廉姆斯:相對于那些“應用”科學來說,天文學更“純粹”一些,在日常生活中的實際應用并不太多。一個人即使沒有任何天文學知識,仍會生活得很好。但事實是,天文學沒有實際應用并不意味著它“淡出人們的生活”。天文學直接影響著人類對宇宙和自身的認識。人與宇宙關系的基本認知對于我們的自我了解是十分關鍵的。
《中國國家天文》:在一些科幻小說和電影中,有許多天文學方面的錯誤。您認為專業天文學家有必要去澄清它們嗎?您之前是否這樣做過?
威廉姆斯:的確,電影中確實有很多天文學的錯誤。而且,電影中還有更多關于人類行為的錯誤!但我認為糾正這些錯誤并不重要。重要的是,更要通過關注其它更積極的活動去表現我們的創造力。隨其他人去犯你認為的錯誤吧,而你自己則要努力去做那些更具有創新性的和異于其他人想法的事情。
濰坊市奎文區實驗小學 王初迪
《哥白尼》這本書講敘了哥白尼寫《天體運行論》時所經歷的磨難,使我深受啟發——真理必勝!
當時天文學中占星術是一種非常流行的職業,當時的天文大師托勒密認為:“地球是宇宙的中心,太陽、月亮、水星、土星、金星、木星等都繞著地球轉”。而哥白尼的“日心說”就像顆原子彈扔進了教堂里,把托勒密炸成了骨灰。
哥白尼創立的“日心說”,不但是天文學上的一次偉大革命,也是人類宇宙觀的一次重大革新,沉重地打擊了封建社會神權的統治。從此,天文學便大踏步地飛速前進了。因此,后人稱他為“天文學之父”。
現代科學技術概論不但應該是現代科學技術成果的概論,而且也應該是現代科學技術發展歷史和規律的概論。離開現代科學技術發生、發展的歷史,靜止、孤立地介紹現代科學技術的基本理論和成果,就會使現代科學技術概論這門課程變得零亂龐雜而不成體系。而如果把“史”與“論”有機地結合和統一起來,則不但能克服“零亂龐雜”的缺陷,而且還能為現代科學技術概論這門課程注入生機和活力。同時,把“史”與“論”結合起來,更是為思想政治教育專業學生開設這門課程的教學目的之所需。作為思想政治教育專業的學生,通過現代科學技術概論課程的學習,不但要了解現代科學技術的主要成果、歷史演進和完整體系,而且要了解科學技術發生、發展的一般過程和規律,了解哲學產生的現代科學技術基礎以及對于推動科學技術發展的重要作用和意義。因此,只有做到史論結合,才能達到開課的目的和要求。
2現代科學技術概論的教學內容與體系
根據上述三原則,筆者認為,思想政治教育專業現代科學技術概論課程的內容與體系可做如下安排。導言。概要介紹現代科學技術及其理論基礎、前沿陣地、中心內容和綜合體現。
第一章,現代物理學革命及其影響。介紹現代科學技術的理論基礎———相對論和量子力學。引言,概述近代物理學的輝煌成就及其所遇到的“兩朵烏云”。第一節,相對論的建立。根據邏輯與歷史相統一的原則,具體講授伽利略變換和力學相對性原理,邁克爾遜—莫雷實驗,洛倫茲變換的提出,愛因斯坦的狹義相對論及其主要結論,廣義相對論及其驗證。第二節,量子力學的建立和發展。一、量子力學產生的歷史背景,概要介紹黑體輻射理論和紫外災難。二、量子力學的建立與發展,具體講述普朗克的量子假說,愛因斯坦的光量子理論,玻爾對原子結構的量子解釋,德布羅意的物質波,薛定諤的波動方程,海森伯的矩陣力學。第三節,現代化學理論的發展。主要講授元素周期理論的新發展和現代化學鍵理論。
第二章,原子物理學的開發研究及應用。主要講授從物質結構的研究到原子能的開發和應用。第一節,對微觀世界的探索和認識。一、物質結構初探,復習回憶德謨克利特的原子論,道爾頓的原子說,門捷列夫的元素周期律。二、向原子世界的進軍,主要講授X射線、放射性元素及電子的發現,原子結構模型及其實驗和發現,原子核結構模型及其實驗和發現,對基本粒子家族的認識。第二節,原子能的開發研究及應用。一、原子能的開發研究:重點介紹原子能開發研究中的三大發現,即慢中子效應的發現、核裂變的發現和鏈式反應的發現。二、原子能的應用,包括能源方面的應用和放射性同位素的應用。能源方面的應用包括兩個方面:一是軍用三彈即原子彈、氫彈和中子彈的研制;二是核電站的發展,主要介紹從慢中子反應堆到快中子增殖堆再到核聚變反應堆的歷史發展。放射性同位素的應用可概要介紹在生產、生活、科研、軍事上的應用及其成果。
第三章,生物學與生物工程技術。生物學是研究生命的科學;生物工程技術是用人工的方法創造生命的技術。生命科學是現代科學的三大前沿陣地之一;生物工程技術是現代科學技術的主要內容。第一節,生命的起源和生物的進化。一、生命起源的化學進化歷程:從無機小分子物質生成有機小分子物質;從有機小分子物質形成有機高分子物質;從有機高分子物質形成有機多分子體系;從有機多分子體系演化成原始生命物質。二、生物進化論,主要介紹拉馬克的生物進化學說和達爾文的生物進化論。第二節,現代遺傳學和分子生物學。一、遺傳學:主要講授孟德爾的豌豆實驗及其遺傳學說;摩爾根的果蠅實驗及其遺傳學說。二、分子生物學:重點介紹蛋白質的性質、結構和功能;核酸的性質、結構和功能。第三節,生物工程技術。生物工程包括酶工程、發酵工程、細胞工程和基因工程四個部分的內容。因學時限制,可重點介紹細胞工程和基因工程兩個部分。一、細胞工程,應首先講授細胞的全能性,然后在細胞全能性的基礎上具體介紹植物組織培養技術、細胞融合技術、細胞折合和胚胎移植技術、克隆技術等內容。二、基因工程:(1)基因工程的基礎研究,主要介紹限制性內切酶、連接酶和基因載體的發現和研制。(2)基因工程的基本程序和方法,包括獲取目的基因DNA、獲取載體基因DNA、目的基因DNA與載體基因DNA的重組、把重組的DNA轉入受體細胞進行增殖和篩選轉基因生物體五個步驟及方法。三、生物技術的應用前景。主要介紹生物醫藥的研制及應用、生化工業的迅速發展、轉基因動植物的大量出現,人類基因組計劃(HGP)及其廣闊的應用前景。
第四章,天文學和天體演化學說。天體演化學說是現代科學的三大前沿陣地之一,本章在重點講述天體演化學說之前,先把天文學的相關知識作一簡單介紹。第一節,天文學及其產生和發展。一、概要介紹天文學的研究對象和分類;二、重點講授天文學的產生和發展:具體介紹古代天文學、近代經典天文學和現代天文學的發展情況。第二節,獲取天體信息的渠道和手段;可分三個大問題來講述。一、獲取天體信息的渠道,主要介紹電磁輻射、宇宙線和中微子三條途徑;二、獲取天體信息的物質手段和儀器設備,主要介紹人眼的構造和功能、光學望遠鏡、射電望遠鏡和天體攝譜儀;三、天文觀測發展簡史:依次介紹光學天文學、射電天文學和空間天文學。第三節,天體的起源和演化。一、宇宙的起源和演化:主要介紹牛頓“無限無邊”宇宙模型及其疑難、愛因斯坦“有限無邊靜態”宇宙模型及其疑難、哈勃定律與大爆炸宇宙模型;二、星系的形成和演化:先對星系及其類型作一簡單的介紹,然后在此基礎上介紹星系的形成和演化;三、恒星的形成和演化:具體介紹恒星的形成,表征恒星演化過程的赫羅圖,恒星演化過程的三階段,即主序星階段、紅巨星階段和恒星的三種歸宿(白矮星、中子星和黑洞);四、太陽系的形成和演化:主要介紹太陽系的基本情況和太陽系的形成和演化兩部分內容;五、地球的構造和演化:包括地球概況、地球的圈層構造和地球的形成和演化。
第五章,信息技術和激光技術。人類歷史在經歷了6000年的農業社會和近300年的工業社會以后,現在正在迅速走向第三個文明社會———信息社會。所謂信息社會,就是信息在社會生產和生活中起主導作用的社會。信息技術和信息產業,是信息社會的重要支柱。所謂信息技術,就是信息的獲取、傳遞和處理技術。信息技術以微電子技術為基礎,包括計算機技術、通信技術、光導技術和人工智能技術等。第一節,微電子技術。一、微電子技術的出現:具體介紹集成電路的誕生、集成電路的種類及其歷史發展和集成電路的制作工藝;二、微電子技術的應用。第二節,計算機技術。一、計算機概述:具體介紹計算機的結構與功能、計算機的特點和計算機的歷史發展;二、計算機的應用:主要包括數值計算或科學計算、數據處理或稱信息處理、實時控制或稱過程控制、計算機輔助系統、人工智能或稱智能模擬等;三、信息高速公路。第三節,通信技術。一、電氣通信:主要介紹電話通信和非電話通信及傳真;二、光纖通信:具體介紹光纖通信的基本原理、光纖通信的優點、光纖通信的應用和發展;三、衛星通信。第四節,激光技術。一、激光與激光器:具體介紹激光產生的基本原理、激光的特點、激光器的構造等內容。二、激光技術的應用:概要介紹激光加工(包括激光鑄模、激光切割、激光焊接、激光雕刻等)技術及其在農業、醫療、軍事上的廣泛應用。