前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇人工智能教學建議范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
中圖分類號:TP18文獻標識碼:A文章編號:1009-3044(2007)12-21667-02
The Application of Artificial Intelligence in Education
HU Ji-li,YIN Yun-xia
( Anhui University of Traditional Chinese Medicine, Hefei 230038,China)
Abstract:As a result of the interpenetration of older branches into each other, scientific theories and their application of Artificial Intelligence have expanded into nearly all the areas of human activity. This paper introduces the application of Artificial Intelligence in education, especially deals with Intelligence Computer Aided Instruction based on the artificial Intelligence.
Key words:Artificial Intelligence;CAI;expert system;knowledge base
1 引言
人工智能作為當今世界三大尖端技術(空間技術、能源技術和人工智能技術)之一,是計算機科學的一個分支,它的目標是構造能表現出一定智能行為的。人工智能是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識、心理學和哲學、機器學習、計算機視覺等。總的說來,人工智能的目的就是讓計算機這臺機器能夠像人一樣思考。人工智能的研究更多的是結合具體領域進行的,主要研究領域有專家系統、機器學習、模式識別、自然語言理解、自動定理證明、自動程序設計、機器人學、博弈、智能決定支持系統和人工神經網絡。它總的來說是面向應用的,隨著人工智能的誕生和發展, 人們開始把計算機用于教學領域。同時, 自七十年代以來, 有教學能力的專家系統得到研制。人工智能技術與專家系統的成就, 促使人們把問題求解、知識表示這些技術引入計算機輔助教學(CAI) , 這便是智能型計算機輔助教學(CAI)。
近幾十年來, 隨著人工智能技術的日漸成熟, 它的一些研究成果被陸續應用到教學領域, 推進了教育發展改革和教學現代化進程。人工智能在教學系統的重要性也已形成共識。
2 人工智能在教育中的作用
目前在教育技術中涉及到AI的主要有以下領域:
2.1 知識的表示與訪問
基于人工智能的知識表示是以知識為對象,以計算機的軟硬件和計算機科學及人工智能和專家系統技術為工具,以哲學、心理學和邏輯學等為方法和指導,將知識表達成計算機可以直接處理的“知識庫”,使用“計算機的智能”來模擬人類專家或“人類智能”,對知識進行快速、精確、自動、科學的處理。它不屬于通常的“數據管理或信息管理”的“數據”層次,而是屬于“知識處理”或“知識”的智能化層次。其主要內容是對于知識進行形式化的表示、自動化的推理,智能化的教學或創造。計算機輔助教育是其中重要的組成部分。
2.2 符號計算
符號計算包括數值計算、符號計算和函數作圖。其代表軟件是Mathematica,當該軟件在1988年第一次,對科技及很多其他領域的計算機使用方式產生了深刻的影響。Mathematica 1.0時,商業周報將其列入當年最重要的十大新產品名單。這標志著現代科技計算的開始。Mathematica也被大量地用于教育:有成百上千的課程,從高中課程到研究生課程用它作基礎。隨著各種學生版的,Mathematica也已成為全世界各種不同專業學生的重要工具。
2.3 對學生錯誤的自動診斷
采用人工智能技術,使得教學過程中系統可以自動診斷學生的學習水平,不僅能發現學生的錯誤,而且能指出學生錯誤的根源,從而做出有針對性的輔導或學習建議。而且根據學生的特點自動選擇教學內容,自動調整教學進度,自動選擇教學策略與方法。
2.4 實現智能性超媒體教學系統
超媒體系統有理想的教學環境,容易激發學生的學習興趣和學習主動性,但不能保證達到預期的學習目的,而且由于不了解所要教的對象,所以不能做到有針對性的指導,不能因材施教。智能輔助教學系統正好與此相反。將二者結合起來,就可實現性能互補,從而研究制出新一代高性能的智能超媒體教學系統。
3 人工智能應用于教育的新方向:ICAI
3.1 傳統CAI的不足
傳統的CAI由于其集成性、交互性、多媒體性等特點,在教學中可以極大地激發學生的學習動機,提高教師的教學效率和學生的學習效率。但在使用過程中,CAI的一些弱點也逐漸暴露出來。主要表現有:
(1)缺乏人機交互能力
現有CAI 大多以光盤作為信息的載體, 將教材中的內容以多媒體的形式展現出來, 教學信息是按預置的教學流程機械式地提供給學生的, 學生接受起來很被動。而且在課堂教學中, 一般也只能通過教師按預定的課件流程進行操作, 無論學生還是教師都不能很好地參與教與學的過程, 因此人機交互沒有很好地實現。
(2)缺乏教師與學生的互動
現有的CAI 課件在學生自學、進行操作使用時,如何學習都是學生自己的事。教師不能完全了解學生的情況,學生在碰到問題時,也不能向教師求助,師生之間是互相封閉的,軟件所起的積極效果大打折扣。同時由于缺乏網絡支持,現有的絕大多數CAI 課件是在單機環境下運行的,它們無法利用網絡的優勢使知識內容快速更新,也更無法提供便捷的學習討論空間、隨時隨地的師生交流方式以及遠程教學實現的條件。
(3)缺乏智能性
要想面對不同情況的學生進行不同程度的教學過程, 使學生的學習變為主動, 并能由系統自動地提供助學信息而有選擇地學習,要想使教師的教學能積極地參與進去并根據系統提供的信息按照學生的認知模型為其準備最適合的學習內容, 給予不同方式的教學模式與方法, 沒有智能性的CAI 課件系統, 是很難實現以上目的并達到良好教學效果的。由此可見,現有的CAI 隨著人們要求的提高, 已經不能盡如人意。因此以智能CAI 為代表的新的計算機輔助教學系統將是教師在教育技術上需要不斷探求、努力實現的發展方向索。
3.2 ICAI-人工智能與多媒體技術的結合
為了克服傳統CAI的缺點,需要在知識表示、推理方法和自然語言理解等方面應用人工智能原理。因此很多專家提出了智能計算機輔助教學(ICAI),智能計算機輔助教學(Intelligence Computer Assisted Instruction-ICAI)以認知學為理論基礎。將人工智能技術應用于CAI,是智能化的CAI。在ICAI系統中,允許學生與計算機進行較自由的對話,學生的應答不限于數字或簡單的短語。系統能夠判定學生應答的正確程度,并給予適當的反饋,而不是簡單地說“對”或“錯”。ICAI的宗旨在于利用現有計算機技術實現較好的人工智能,模仿人類的交互方式、思維習慣及情緒流動,修飾和掩蓋計算機的缺陷。
3.3 ICAI的優點
(1)將教學內容與教學策略分開,根據學生的認知模型提供的信息,通過智能系統的搜索與推理,動態生成適合于個別化教學的內容與策略。
(2)通過智能診斷機制判斷學生的學習水平,分析學生產生錯誤的原因,同時向學生提出更改建議、以及進一步學習內容的建議。
(3)通過對全體學生出現的錯誤分布統計,智能診斷機制將向教師提供教學重點、方式、測試重點、題型的建議。
(4)為教師提供友好的教學內容、測試內容維護界面,無需改變軟件的結構即可調整教學策略。
(5)通過對學生認知模型、教學內容、測試結果的智能分析,向教學督導人員提供對任課教師教學業績評價的參考意見。可以說,一個理想、完美的ICAI系統就是一個自主、優秀的“教師”。
3.4 ICAI的標準
以現有的科學技術水平而言,短時期內顯然無法實現具備上述全部功能的ICAI系統。一般認為,只要具有下列一個或幾個特征的CAI系統就可以稱之為ICAI系統。
(1)能自動生成各種問題與練習。
(2)根據學生的學習水平與學習情況選擇與調整學習內容和進度。
(3)在了解教學內容的基礎上自動解決問題,生成解答。
(4)具有自然語言生成與理解能力,以便實現比較自由的教學問答系統,提高人機交互的主動性。
(5)對教學內容有解釋咨詢能力。
(6)能診斷學生錯誤,分析原因并采取糾正措施。
(7)能評價學生的學習行為。
(8)能評價教師的教學行為。
不難看出,ICAI與傳統的CAI相比,更加符合教育教學的規律,切合學生的認知習慣,具有明顯的優越性。
3.5 ICAI的結構
ICAI主要由三個模塊組成:專家系統模塊、教師模塊和學生模塊。
(1)知識庫
知識庫是實現知識推理與專家系統的基礎,而建造知識庫的前提則是要解決知識的形式化,人工智能技術在教育中的應用表示以及知識的訪問與調用問題。因此,知識的表示與訪問是人工智能的核心技術之一,也是將AI引入教育領域必須首先解決的一個難題。
ICAI中的資源庫應該包括以下一些內容:
①多媒體素材庫:包括所要呈現的知識的一些素材,包括:文本、圖像、聲音、動畫及數字影象等多媒體教學資源。這些用于多媒體數據庫管理,便于分類、增刪、修改及查詢等操作。
②教學內容庫:教學內容庫用于存放教學內容,包括領域知識庫(含輔助知識庫、提示幫助庫、練習題庫,和測試題庫)。這些教學內容,包括習題和試題分章、節、課及知識點等有序存貯。供專家決策系統調用。
(2)學生模塊
學生模塊主要包括以下三個模塊:學生登陸模塊、學生水平評價模塊和學生監督模塊。
①學生登陸模塊:利用該模塊主要用于學生使用ICAI時登錄,第一次登錄時學生輸人姓名、性別、年齡、學歷等相關信息,然后對學生進行詢問,選擇合適的測驗題對學生進行初測推薦學習計劃。當再次登錄時,系統根據保存的信息安排合適的學習內容。
②學生水平評價模塊:學生水平測試模塊用于評價某一教學單元學習完后測試成績。通過測試等因素分析,可以比較確切地了解學生的具體情況,從而制定出合理的教學策略和教學過程
③學習監測模塊:學習檢側模塊用于監測記錄學生的日常學習情況,記錄學生學習某教學單元時的參數值,并記錄在學生檔案中。包括:學生目前學習單元號;學習方式;正常學習、練習、提前瀏覽、學后復習;學習時間;學生提示問題的類型和次數;學生本次練習出錯次數。
(3)專家決策模塊
CAI中的專家決策系統可以看作專家系統中的推理機。專家系統是目前人工智能中最活躍、最有成效的一個研究領域,它是一種具有特定領域內大量知識與經驗的程序系統,它應用人工智能技術,模擬人類專家求解問題的思維過程求解領域內的各種問題,其水平可以達到甚至超過入類專家的水平。計算機中存有人類專家的知識并具有推理能力,從而可解決診斷、規劃、調度、預報、決策等要靠人類專家才能完成的任務。
成功的例子如:① DENDRL系統的性能已超過一般專家的水平,可供數百人在化學結構分析方面的使用;②MYCIN系統可以對血液傳染病的診斷治療方案提供咨詢意見經正式鑒定結果,對患有細菌血液病、腦膜炎方而的診斷和提供治療方案已超過了這方面的專家。
ICAI根據學生模塊提供的學生學習情況,通過智能系統的搜索與推理,得出智能化的教學方法與教學策略,能夠較科學地評估學生的學習水平,還可以通過分析學生以往的學習興趣和學習習慣,預測學生的知識需求和常犯錯誤,動態地將不同的學習內容、學習方法與不同的學生匹配,智能地分析學生錯誤的原因,進而有針對地提出合理的教學建議、學習建議以及改進方法,既提高了學生學習的滿意度,激發了學生的學習熱情,也對教師教學提供了客觀的依據和科學的方法。
4 結束語
由此可見人工智能技術已經逐步應用于計算機輔助教學中,與教學現代化有著密切的關系。人工智能技術的發展也必將會對ICAI 的發展起到巨大推動作用。近幾年來,人工智能的研究者們嘗試著使學生脫離“輔導學習”的過程來接受新知識,而采用“通過活動進行學習”的方式。在教學的其他方面,人工智能技術還可以建立人類推理模型學習工具等諸多的運用, 展示出越來越好的實用性。隨著Internet 的發展,虛擬現實技術的廣泛應用, ICAI 也將得到進一步的完善。21 世紀的教育教學手段將是以智能化CAI 為主線,多學科、多方位發展的新技術的體現。這種手段產生了人機交互、人機共生等全新概念,使人類擴展了自己的能力,促進了教育領域方方面面的改革。
參考文獻:
[1]王萬森.人工智能原理及其應用[M].北京:電子工業出版社,2000.
關鍵詞:人工智能;創新性教學;精品課程;課程建設;教學改革
人工智能課程是計算機類專業的核心課程之一,也是智能科學與技術、自動化和電子信息等專業的重要課程,其知識點具有不可替代的重要作用。該課程內容廣泛,具有很強的綜合性、應用性、創新性和挑戰性[1],其開設能夠更好地培養學生的創新思維和技術創新能力,為學生提供了一種新的思維方法和問題求解手段。同時,本課程能夠培養學生對計算機前沿技術的前瞻性,提高他們的科技素質和學術水平。通過課程的學習,學生對人工智能的定義和發展、基本原理和應用有一定的了解和掌握,啟發了對人工智能的學習興趣,培養創新能力。
中南大學人工智能課程開設于20世紀80年代中期。1983年,蔡自興作為訪問學者赴美國普度大學研修人工智能,并與美國國家工程科學院院士傅京孫(K. S. Fu)教授及清華大學徐光v教授合作研究人工智能。在傅京孫院士教授的指導下,蔡自興和徐光v教授執筆編著《人工智能及其應用》一書,并于1987年5月在清華大學出版社問世,成為國內率先出版的具有自主知識產權的人工智能教材。本教材不僅為我校人工智能課程提供了一部好教材,而且促進了國內高校普遍開設人工智能課程。此后,又陸續編著出版了《人工智能及其應用》第二版、第三版“本科生用書”和“研究生用書”、第四版等,修讀該課程的學生也與日俱增。該書第二版還獲得國家教育部科技進步一等獎。經過近20年建設,該我校人工智能課程于2003年評為國家精品課程,并在2008年評為國家雙語教學示范課程。這是至今國內唯一同時獲得國家級精品課程和雙語教學示范課程的人工智能課程。同時,我們還開發了人工智能網絡課程,具有網絡化、智能化和個性化等特色,被國家教育部評為優秀網絡課程,供兄弟院校人工智能教學參考使用,受到普遍歡迎[2]。
作為國內第一門人工智能精品課程,我們按照教育部精品課程標準建設《人工智能》課程,尤其是在教學內容、創新性教學方法和教學模式上進行不斷進行改革與探索,取得了很好的效果。本文即為我校人工智能精品課程建設與改革經驗的初步總結。
1教學內容優化
1.1課堂教學內容優化
教學內容的確定是課程的首要任務。如何選好教學內容,使學生既能了解本領域的概貌,又能適合學生的基礎,便于他們在有限的時間完成學習任務,是一件難事。教學內容除了包含基礎理論外,還應該反映人工智能領域的新發展和新動態,跟上學科發展的步伐。本課程最初設定的教學內容分基礎部分和擴展應用部分。基礎部分主要包括人工智能的定義和發展、知識的表示以及推理,而擴展應用部分主要包括專家系統、機器學習、機器規劃、機器視覺等。
近年來人工智能科學的快速發展,涌現出了大批新的方法和算法,研究熱點問題也從符號計算發展到智能計算和Agent等。
學內容,既能使學生了解本領域的概貌,又能適合學生的基礎,便于他們在有限的時間完成學習任務,是一件難事。教學內容除了包含基礎理論外,還應該反映人工智能領域的新發展和新動態,跟上學科發展的步伐。本人工智能課程最初設定的教學內容分基礎部分和擴展應用部分。基礎部分主要包括人工智能的定義和發展、知識的表示以及推理,而擴展應用部分主要包括專家系統、機器學習、機器規劃、機器視覺等。
近年來人工智能科學的快速發展,涌現出了大批新的方法和算法,研究熱點問題也從符號計算發展到智能計算和Agent等。
隨著科學技術的不斷進步,在科學研究和工程實踐中遇到的問題變得越來越復雜,傳統的計算方法無法在一定時間內獲得精確的解。為了在求解時間和求解精度上取得平衡,很多具有啟發式特征的智能計算算法應運而生。這些算法通過模擬大自然和人類的智慧來實現對問題的優化求解。計算智能作為人工智能的一個新的分支是目前的研究熱點,它主要涉及神經計算、模糊計算、進化計算和人工生命等領域,在如模式識別、圖像處理、自動控制、通信網絡等很多領域都得到了成功應用。另一個近10年來人工智能的研究熱點是Agent和多Agent系統,其理論最早來自分布式人工智能,并隨著并行計算和分布式處理等技術的發展而逐漸成為熱點。
以上兩個內容都是人工智能的重要分支。因此,我們在《人工智能及其應用》第三第3版[3]和第四第4版教材[4]中已經順應形勢加入了這方面的內容,并將教學內容也進行了相應的擴展,加入了計算智能、分布式人工智能與Agent。由于不確定性推理和基于概率的推理方法應用也越來越廣泛,我們也將此類非經典推理方法單獨作為一章來進行教學。另外,還增加了一些新的內容,如本體論和非經典推理、粒群優化和蟻群計算、決策樹學習和增強學習、詞法分析和語料庫語言學,以及路徑規劃和基于Web的專家系統等。圖1給出本課程的教學內容大綱。
人工智能的教學內容涉及面廣且內容較多,要在有限課時內完成教學計劃并讓學生掌握,具有一定難度。因此需要根據教學對象的需求有所取舍。中南大度。因此需要根據教學對象的需求有所取舍。中南大學在智能科學與技術、計算機、自動化三3個專業中均開設了人工智能課程,根據相關專業課程教學對象,對學時和教學內容進行適當調整。對于智能科學與技術專業,人工智能課程為必修課,共48個學時含實驗8個學時。表1表示為相關專業的人工智能課程教學內容分配情況。對于計算機和自動化專業,人工智能課程為選修課,共32個學時含實驗8個學時。許多兄弟院校的計算機專業都把人工智能定為必修課,課程學時也在50學時左右。因此,我們一再強烈建議我校的計算機專業把人工智能列為必修課,并適當增加學時。由于智能科學與技術專業開設有專家系統和智能計算選修課程,因此在人工智能教學內容中只將這兩部分做簡要闡述,而將重點放在知識表示和推理以及擴展應用上。對于計算機專業學生來說,除基本的知識表示和推理外,計算智能和Agent技術也是他們在軟件開發和通訊技術理論學習中需掌握的重要概念。同時,計算智能、專家系統對自動控制和電氣工程也十分重要,對自動化專業則應掌握該方面的內容。
1.2實驗實踐教學創新
國內人工智能課程在開設之初大多沒有安排實驗內容,僅為理論基礎和概念講授。由于理論比較抽象,很難理解,學習效果不理想,學生們對于其應用實現也十分困惑。此后,各高校也逐步在該課程中分配了實驗學時,大多數采用prolog語言和專家系統作為實驗語言和對象[5]。為了改進該課程的教學,我們也從沒有實驗到將實驗學時從零調整為設置4個學時的實驗課時,然后到現在的8個學時的實驗課時。隨著課堂教學內容的改革,實驗內容也進行了優化和更新。
人工智能課程實驗的目的是幫助學生掌握基本理論,發揮主動性,研究探討人工智能算法和系統的運行和實現過程,提出思路并驗證自己探索的思路,從而更好的地掌握知識,培養研究能力和創新能力。因此,在實驗教學內容的設計上,實驗項目應具備研究性和綜合性。實驗項目目標明確,要求學生帶著問題和任務進行實驗,但實驗過程又要有一定的靈活性,學生可以根據自己的思考進行適當的調整。再者,充分采用虛擬實驗方式進行實驗,大大提高了學生的興趣,提供了分析和探討智能算法的很好平臺。同時,學生的實驗數據和實驗結果分析既有格式要求,又給學生報告自己的研究的過程和結果留有空間,并在評分時加以充分考慮。這些做法能夠鼓勵學生,特別是鼓勵優秀學生進行獨立性研究,滿足他們學習的需求。
1) 人工智能課程的實驗環節不足和課時分配問題。
中南大學的人工智能課程的實驗環節經歷了從精品課程建設前沒有到開設,一直到其內容和形式上的不斷改進過程。但目前實驗還主要處于演示性和編程的實驗階段,而非設計和訓練階段。此外,由于人工智能課程涵蓋范圍廣、內容多,而課程所設置的學時有限。,如何分配好課堂教學與實驗課時也是一個需要在今后課程建設中不斷探索的問題。
對于某些專業的人工智能課程,可以考慮單獨開設人工智能實驗課程或人工智能程序設計與實驗課程。
2) 人工智能技術發展迅速情況下如何保持該精品課程持續發展的問題。
人工智能作為一門高度融合的交叉科學,其發展速度迅速,不斷有新理論、新問題涌現出來。我們的
人工智能教學既要注重基礎理論知識,又要緊跟學科發展的步伐,勢必要求對課程內容進行不斷更新,這對我們的教學資源和教師素質都提出了更高的要求。
4結語
本文介紹了中南大學的精品課程――人工智能課程教學內容和創新性教學方法的一些探索,已在課堂教學內容的優化、實驗環節的改進、教學方法的創新的實施上取得了很好的效果,充分激勵了學生的學習積極性和主動性,多方位培養學生發現問題、分析問題和解決問題的能力。我們的想法和做法可供兄弟院校同行參考。不過,仍然存在一些不足之處。隨著智能科學與技術的發展和更為廣泛的應用,人工智能課程的重要地位必將更加突顯,我們也需要繼續努力,與時俱進,不斷完善人工智能精品課程的建設。
注:本文受教育部質量工程國家級精品課程人工智能(2003)、全國雙語教學示范課程人工智能(2007)項目支持。
參考文獻:
[1] 薛瑩. 創新教育新途徑人工智能與機器人教育:哈爾濱市教育研究院張麗華院長訪談錄[J]. 中國信息技術教育,2010(1): 20-22.
[2] 蔡自興,肖曉明,蒙祖強,等. 樹立精品意識搞好人工智能課程建設[J]. 中國大學教學,2004(1):28-29.
[3] 蔡自興,徐光佑. 人工智能及其應用[M]. 3版. 北京:清華大學出版社,2003.
[4] 蔡自興,徐光佑. 人工智能及其應用[M]. 4版. 北京:清華大學出版社,2010.
[5] 韓潔瓊,閆大順. 人工智能實驗教學探討[J]. 計算機教育,2009,(11):135-138.
[6] 劉麗玨,陳白帆,王勇,等. 精益求精建設人工智能精品課程[J]. 計算機教育,2009,(17):69-71.
Exploration of Innovative Teaching Mode of Artificial Intelligence Elabrate Course
――Construction and Reformation in Elaborate Course of Artificial Intelligence
CHEN Bai-fan, CAI Zi-xing, LIU Li-jue
(Institute of Information Science and Engineering, Centnal South University, Changsha 410083, China)
【關鍵詞】互聯網信息時代 人工智能 應用研究
當前,世界已全面進入以大數據共享、信息爆炸為特點的互聯網信息時代。富有智能化和人性化的計算機網絡技術服務成為了人們青睞和關注的焦點。人工智能作為互聯網信息時代凝聚高端技術的超值網絡服務,在增強互聯網安全性、提高網絡操作自動化等方面意義重大。現階段,已有更多行業領域的用戶在應用人工智能,體驗這一技術所帶來的新生活。
1 人工智能簡述
人工智能,即Artificial Intelligence,是現代社會特有的綜合類前沿學科,交叉云集了計算機、網絡技術、控制方法論、信息論、神經生物學、語言學等多學科知識,主要用來研究機器在思考、學習、規劃等行為的擬人態進化,使之解決問題的能力大幅提升。人工智能發展至今已有超過60載歲月,其成就在整個歷程中熠熠生輝,代表著人類文明的不斷發展與超越。人工智能經歷了三個階段的發展變革:第一階段是以人工智能驅動機器設備,代替或輔助人類思考并解答難題;第二階段是研發智能機器人,處理不同系統及環境信息的交互工作,如不確定性信息的處理工作;第三階段的代表成果就是數據挖掘系統,可實現海量模糊信息采集與分析,可視化技術發展迅猛,計算機具有自主學習能力。
2 人工智能的應用領域代表成就
任何一項技術的創新與發展,都源于人類開展生產生活的實際需求,人工智能技術的研究也不例外,發展至今已經為解決不同領域的實際需求提供了眾多技術應用。目前,人工智能在下列應用領域中取得了代表性成就:
2.1 專家系統
專家系統,其實是由龐大的程序組編寫完成的數據系統,廣泛積累不同專業的知識經驗,這些知識均可事先歸納分析,可按具體模式表示,從而幫助用戶憑借領域專家的固有知識進行推理解決問題。專家系統可系統化分析輸入信息并結合已有知識體系進行全面推理,提出建O性的決策建議,相當于發揮行業專家的作用。
2.2 數據庫智能檢索
人工智能想要做到全面模擬人類思維和動作,需要建設強大的數據庫資源,便于及時開展智能檢索。數據庫基于計算機軟件開展,存儲了海量專業學科知識,也稱之為知識庫系統,一旦有用戶需要查閱解決該學科的專業問題,都可通過智能檢索功能實現快速精準地檢索。
2.3 程序自動設計
自動化的程序設計就是借助更高規格高標準的程序設計系統來完成指定功能的程序設計,該系統需要用戶輸入所設計程序的需求目標,并對整個流程和架構有更為高級的描述,系統就能自動組織對應程序完成設計。高度自動化的程序設計編寫方式,也展現了人工智能系統的思考、學習、修正自身缺陷的擬人態功能。
2.4 目標模式識別
模式識別,顧名思義正是為識別不同物體的特征是否匹配目標對象而具備的功能。現代計算機加強了模式識別系統功能,能夠提高機器對外界信息的感知能力,不斷接受外界信息,對所處環境的特征進行識別,加強概念理解。當前,目標模式識別已由二維向三維層面升級,為研究智能機器人提供了堅實的基礎。
當然,人工智能的應用領域遠不止上述這些,還在機器學習、機器視覺圖像處理(machine vision)、自然語言理解(Natural Language Understanding)、自然信息博弈論等方面發揮著重要的作用。
3 不同行業的人工智能技術應用實例
目前,眾多企業為求發展,與內部運營管理中加強了人工智能的應用,聚力解決各項問題,為企業贏得了經濟效益,推動著社會發展。
3.1 企業管理應用
將人工智能應用于企業管理中,需要人的智能和人工智能之間的辯證關系,靈活運用工智能應用平臺加強對企業內部各項管理智能軟件的開發工作,借助靈活的人工智能技術幫助企業實施科學決策。
3.2 水利管理應用
人工智能能夠在水情控制與洪災預報中發揮作用。如可使用人工神經網絡和遺傳算法等技術,模擬汛期的最大洪峰與洪水總量,研究更有針對性的抗洪模型,提高了洪災預報精度和汛期準度,有效發揮防洪降災、攔洪儲水的重要作用。同時,人工智能還能夠分析大江大河的復雜地質與環境系統,對治理河流起到良好的輔助作用。
3.3 建筑行業應用
目前,建筑行業的用地規劃、給排水工程、暖通空調工程、施工管理等內容都在應用人工智能。已有企業基于神經網絡算法發明了結構節點探傷法,可查探建筑結構損傷度;也可在市政工程建設中不斷強化正反向混合推理的理論思想,查明城市污水處理管網故障;可構建用于分析建筑工程性能效益的系統,加強建設項目性能效益預測和實際效益分析。
3.4 機械行業應用
人工智能同樣成為互聯網時代下的機械行業技術中的重頭戲。如:人們利用人工神經網絡算法,設計出土方工程的機械調度的優化方案;多個工程都可搭建含多目標的尋優函數模型。許多大型機械裝置,都配置了人工智能操作平臺,可提高安全風險監控水平,增強機械操作自動化,進一步優化生產效率。
3.5 商品銷售預測應用
人工智能的各種函數模型或優化算法,可在商品銷售金額的預測中發揮巨大作用。如:在計算機中輸入不同商品某一時間段的銷售額,形成非線性系統進行分析,評估各種影響因素。采用人工神經網絡,不斷放大自分布處理、自組織學習、自適應與自容錯等特性,體現強大的預測功能。
當然,人工智能還廣泛應用到電子網絡技術應用、企業財務管理、航班信息查詢、教學服務、心理咨詢公路建設、焊接制造、等眾多方面,為更多企業帶來可觀的經濟效益。
4 結束語
互聯網信息時代的人工智能應用,將會隨著科技力量的不斷壯大而實現更多的應用。人們應該高度重視人工智能理論與技術的探究,從而更好地為全人類服務。
參考文獻
[1]何承.計算機網絡技術中人工智能的應用探討[J].信息通信,2016(03):180-181.
[2]韓曄彤.人工智能技術發展及應用研究綜述[J].電子制作,2016(12):95-95.
[3]王宇飛,孫欣.人工智能的研究與應用[J].信息與電腦,2016(05):115-117.
作者簡介
李君,男,江西省上饒市人。上海財經大學浙江學院,主要從事教學軟件管理類工作。
關鍵詞:人工智能;教學內容;教學方法
中圖分類號:G642 文獻標識碼:A
1 引言
人工智能(AI)是二十世紀五十年代后期興起的利用計算機模擬人類智能活動去求解問題的學科,與空間技術、原子能技術一起被譽為二十世紀三大科學技術成就,目前廣泛應用于專家系統、機器翻譯、語音識別、文字識別、計算機視覺、機器人、電子游戲等方面,已經成為計算機技術發展以及許多高新技術產品中的核心技術。
為了適應人工智能技術日益廣泛的需要,國內外高校普遍開設了“人工智能”方面的課程,特別是作為計算機方面專業的核心課程之一。我校自從1993年開始為自動化專業本科生開設“智能控制”選修課,1996年為自動化、計算機、機械等專業本科生開設“人工智能導論”、“人工智能及其應用”課程。目前,我校軟件學院、信息學院、機電學院都開設了“人工智能導論”課程,已經成為計算機科學與技術、軟件工程、數字媒體技術、自動化、機械制造與自動化等許多專業本科生的一門重要的技術基礎課程,也是面向包括人文社科等全校所有專業的公選課之一,其目的是使學生了解人工智能的基本概念和基本原理,初步學習和掌握人工智能的基本技術和前沿內容,拓寬知識面,啟發思路,為學生提供最基本的人工智能技術和有關問題的入門性知識,提高學生應用開發軟件的能力和水平,為今后在相關領域的研究和應用奠定更為堅實的基礎。因此,建設好“人工智能導論”課程具有重要意義和很廣的受益面。
由于人工智能是交叉學科,涉及面廣、內容抽象、不易理解,學生往往有望而生畏的感覺,在教學過程中,老師教、學生學都比較吃力。為了更好地實現上述教學目標,提高本課程的教學質量,協調好教與學的雙邊關系,使學生由望而生畏的感覺,變為有用有趣的感覺,根據已有人工智能課程在教學與實踐方面的經驗和方法,結合“人工智能導論”課程的近幾年教學實踐,對課程的教學體系、教學內容、教學方法、教學手段、考核方式等方面進行了探索總結。
2 調整與優化教學體系和教學內容
“人工智能導論”是計算機科學與技術、軟件工程、數字媒體技術、自動化、機械制造與自動化等許多專業本科生的一門重要的技術基礎課程,也是面向包括人文社科等全校所有專業的公選課之一,其研究領域及內容十分豐富,涉及的基礎面廣。因此如何選好教學內容,既能使學生了解本領域的概貌,又能適合學生的基礎,便于他們在有限的時間完成學習任務,是一件重要而又困難的事情。
進入21世紀以來,人工智能學科又有了新的發展。為了及時反映人工智能研究和學科的最新進展,我們修訂了“人工智能導論”的教學大綱,對教學內容進一步優化和更新,極大充實了各個系統的內容。我們確定的教學內容主要分為三部分:第1部分為概論,介紹人工智能的基本概念、基本內容、主要研究領域及發展過程;第2部分是知識表示,推理和搜索技術,討論幾種常用的知識表示方法、推理技術(包括確定性推理方法和不確定推理方法)和搜索求解策略;第3部分是人工智能應用研究領域,包括專家系統、自然語言理解、機器學習、人工神經網絡、遺傳算法等的基本概念和方法等。其中第2部分是基礎理論,是人工智能的重要基礎,應該循序學習。第3部分是人工智能的應用,由于每個研究內容都相對獨立、自成體系且有其專門的學術著作研究、熱點,因此針對高等院校的本專科生來說,不必循序學習,而且結合專業特點可以選擇其中幾個研究領域。例如對自動化專業的學生來說,可以選擇專家系統、人工神經網絡、遺傳算法等,同時可增加在自動控制領域的應用,包括專家控制、神經網絡控制和進化控制等熱點:而對計算機科學與技術專業來說,可以選擇專家系統、自然語言理解、機器學習等,并輔以動物識別系統、語音識別系統、智能機器人等實例。總之就是要把握課程性質和教學目的,調整本課程教學體系,優化教學內容,讓學生以有限的時間學到人工智能的基礎知識和基本方法。
另外,在選擇和確定教學內容時必須兼顧基礎知識和新興技術,注意與相關課程(如離散數學、數據結構、概率論、自動控制原理、Matlab系統仿真、面向對象的編程技術等)的鏈接,密切理論與實際的關系,通過課堂講授和課外訓練,注意學生能力培養,提高他們的學習效果和整體素質。
3 加強課程立體化建設和系列教材研究
在課程的立體化建設中,教材充當了地基的角色,所有的課程內容安排,無不體現出以教材為基本,以教材為模板。所以本著基礎、實用的原則,我們先后編著出版了《人工智能及其應用》課程教材導論部分概括性強,引人入勝;基礎部分系統全面,敘述深入淺出,循序漸進;應用部分密切理論與實際關系,典型形象。其中第二版在第一版的基礎上,增加了證據理論、模糊推理、神經網絡等理論的一些典型應用,使學生能夠更深入地理解和應用這些理論;另一方面,又新增了自然語言理解及其應用內容,以適應目前計算機翻譯、人機自然語言交互等技術日益廣泛應用的需要。系列教材適應了人工智能導論新課程開設的需要,反映了人工智能學科的發展,為人工智能課程確立了基本框架,發揮了重要作用。系列教材的問世不僅解決了本校“人工智能導論”課程教學用書的問題,而且也被各兄弟院校普遍采用,促進了該課程的普遍開設,推動人工智能學科的發展。
為了配合教材第二版的教學和自學,在已有教學經驗和教學成果積累的基礎上,制作了高質量的教學課件和完整的教學視頻錄像,并刻錄成光盤隨書供讀者使用;同時又研究與開發了網絡課程(http://),以更好地調動學生的學習興趣和主動性,促進本課程的教學改革。
包括主教材、電子教案、教學視頻錄像、網絡課程及教學資料庫等在內的課程立體化建設符合二十一世紀高校教學的要求,支持教師提高教學手段現代化的水平,更貼合學生的學習需求。
4 改革與創新教學模式和教學方法
在“人工智能導論”課程教學的過程中,我們積極探索教學新路,經過數年辛勤試驗,結合蔡自興教授等對人工智能課程的建設經驗,對課程的教學模式和教學方法進行了如下一些的改革與創新。
(1)通過多種途徑激發學生的學習興趣
“興趣是最好的老師”,“人工智能導論”課程的學習效果,直接受到學生興趣和參與意識的影響。由于這是一門導論性前沿課程,一般來說,學生開始學習興趣很大。但是,當一些學生開始接觸到抽象概念和算法時,往往感到不易接受。我們通過各種途徑和方法,激發和培養學生的學習興趣。例如,鼓勵學生參與課堂討 論、布置讀書報告和課外實驗、以問題為導向的啟發式教學、專題討論/辯論等形式。特別,我們精心組織和準備了模糊控制技術及其應用、智能機器人技術與應用、智能交通、BCI(腦機交互接口)等專題,以及智能調度軟件、語音識別系統、動物識別系統、足球機器人比賽、機器人軌跡跟蹤、倒立擺的智能控制等課內演示,使學生擴大了眼界,增加了感性知識,達到提高學生學習興趣的目的與效果。
(2)面向問題的啟發式教學
人工智能中的許多問題,有的似是而非,有的引人入勝。在教學中,有意識的提出相關問題,提請學生思考,鼓勵學生提出自己的猜想和解決方案。然后逐步進入教材中的解決方案,啟發學生求解這些問題,并進行分析和比較,從而強化了學生學習的主動意識和參與意識,提高了學生的學習積極性。例如,在講到比較抽象的“遺傳算法”時,提出“遺傳算法如何用于優化計算?”這一問題。針對該問題,先從“達爾文的生物進化論”入手,討論“遺傳”、“變異”和“選擇”作用;然后通過一個簡單的例子,從特殊到一般地啟發學生思考“遺傳”、“變異”和“選擇”的實現,最終讓學生與教師一起導出遺傳算法用于優化計算的基本步驟。這樣,學生不但從中學習了遺傳算法,而且得到一次邏輯思維的訓練,取得很好的教學效果。
(3)課堂辯論與交互式教學
組織課堂辯論,討論的議題包括人工智能的應用前景和其他比較等有爭議的問題。學生對這些問題展開了激烈的爭論,激發了學習潛能,明確了學習目標。例如,為了加深學生對智能機器人內涵的理解,我們組織了“機器智能能否超過人類智能”的辯論會。會前正反雙方結合本課程內容及其相關知識,認真進行準備;辯論會上正反雙方唇槍舌戰,激烈爭辯,氣氛熱烈。辯論后,學生余意未盡,討論熱情不減。無論是哪一方獲勝,都達到了預期的效果。教學中我們還注意采用了多種交互式策略,如課堂上教師提問可鼓勵或指定學生提問,也可由學生自由地就某個知識點進行主題發言后老師點評等。
(4)個性化學習與因材施教
在本課程教學過程中注意對學生因材施教和個性化教學。例如,通過組織學生進行讀書報告的形式,鼓勵學生從多方面、多角度考慮問題,多提新穎思想,有意識地鼓勵優秀學生探討比較深層的內容,并輔導優秀學生將其成果以科技論文和發表文章的形式轉化為成果。又如,在教學設計和實驗設計中,注意要求學習有余力和興趣的學生選作部分探索性、創新性的功課和實驗(選學內容,如模糊控制器的設計、進化控制等),從而引導學生發揮個性優勢,達到因材施教的目的。同時注意分析學習較差的學生的具體困難,進行有針對性的指導。
(5)多媒體與網絡教學的使用
本課程在PPT演示文稿和網絡課程上,采用了大量的多媒體表現形式,如視頻、動畫、聲音和圖像等。目的在于使得人工智能抽象的知識形象化,便于學生理解。例如,課內讓學生在線觀看涂曉媛博士的計算機動畫“人工魚”的錄像片段、人工生命Floy中生命智能體在環境中不斷的適應進化構成演示等,有助于加深學生對所學知識的理解,促進教學水平的提高,激發了學生對課程的興趣,使學生創新意識得到增強。此外,隨教材附贈的教學光盤和開發的網絡課程(http://)提供了學生課外自學用的高質量的電子課件、完整的教學視頻錄像、豐富的實驗和案例資料等,以更好地調動學生的學習興趣和主動性。
(7)理論與實踐結合
在教學內容安排上,注意理論聯系實際,適時布置一些人工智能實驗給學生進行課外練習。設計的課外實驗包括產生式系統實驗,歸結反演實驗,主觀Bayes推理網絡實驗,A搜索實驗,以及基于Maltab工具箱的模糊控制位置跟蹤系統、兩車追趕模糊控制系統、神經網絡模式識別仿真、遺傳算法優化計算等實驗。通過實踐和參與,保持學習興趣,有助于學生對人工智能基本概念和難點的理解,掌握基本方法和技術,為從事智能系統應用開發打下基礎,從而達到教學目的。例如,我們組織學生參觀我們的研究生綜合自動化實驗室,觀看機器人臂取物、倒立擺控制、語音識別軟件、指紋識別軟件、智能調度軟件等演示,密切理論與實際的關系。
我們在教學改革實踐中探索的這些教學方法,有利于充分激勵學生的學習積極性和主動性,有利于鼓勵學生發揮獨立思考和創新思維,有利于多方位培養學生學習發現問題、分析問題和解決問題的能力。
5 運用多樣化的教學手段和考核方式
5.1 多樣化的教學手段
采用現代信息技術進行教學,構筑“人工智能導論”課程的現代教學模式,是本課程的主要特點之一。教學過程中采用了多媒體教學課件和網絡課程相結合的方法,充分利用多媒體的豐富表現形式,利用網絡課程的交互性、情景化等,進行教學。采用的方法包括:
(1)抽象知識內容的多媒體表示
通過動畫和視頻來演示抽象的概念、算法和過程,包括機器人軌跡跟蹤、機器人臂取物、足球機器人比賽、倒立擺控制、“人工魚”等錄像片段,以及智能調度軟件、語音識別系統、指紋識別系統、動物識別系統等軟件演示。
(2)通過PPT撰寫教案
精心編制PPT,組織好課件內容,做到圖文并茂,提綱挈領,便于學生理解,便于教師講授。
(3)開發與應用網絡課程
“人工智能導論”網絡課程較好的實現了交互性、在一定程度上實現了學習過程的情景化。在交互性方面,通過網絡課程的課堂練習和章節練習,評價學生的學習情況,并給學生提出學習建議。在情景化方面,采用了在線答疑形式,使得學習過程豐富有趣。
(4)先進實驗系統的觀摩與演示
利用我們的研究成果等有利條件,有針對性地對學生進行成果演示(包括智能調度軟件、語音識別系統、指紋識別系統、動物識別系統等軟件),使學生知道學了有用,而且很有用,很有趣,很有意義,從而進一步誘導學生的學習興趣,鞏固了課堂所學知識,提高了教學質量。
教學效果通過上述先進的現代信息技術的應用,不僅極大地提高了學生的學習興趣和主動性,而且也取得很好的實際教學效果,提高教學質量。
5.2 作業、考試等教改舉措
(1)改革作業方式與方法
改變過去那種單純的書面習題作業,發展成為必須交給教師評閱的書面家庭作業、不必交給教師的課外思考題目、口頭布置的思考題或閱讀材料以及大型作業等。其中上交作業通過網絡進行,教師批閱后的作業也通過網絡返回給學生,實現了作業呈交和返回的網絡化。
(2)改革考試方式與方法
如何對本課程的考試方式進行改革一直是我們探索的問題。我們綜合考慮課堂出勤情況(10%)、平時正式作業成績(20%)和期末課程考試(70%),進行綜合評分。期末考試有時采用綜合試題考試,出幾個大題目讓學生選擇其中幾個進行開卷筆試,當面交卷后評分;有時采用課外開卷論文結合或口試面試。最近,我們還對部分學生結合實驗或實際問題提問等進行考核。我們正進一步改革、試驗和探索,使考試成為衡量與培養創新能力,促進學生學習主動性和提高課程教學質量的重要環節。
關鍵詞:知識表示與知識推理;教學設計;教學實踐;數理邏輯;人工智能
知識表示與知識推理是智能信息處理的基礎。從人工智能的角度看,知識是構成智能的基礎,人類的智能行為依賴于利用已有的知識進行分析、猜測、判斷和預測等。當人們希望計算機具有智能行為時,首先需要在計算機上表達人類的知識,然后再告訴計算機如何像人一樣地利用這些知識。
自從人工智能領域誕生以來,知識表示與知識推理就一直是其中最為重要的子領域。經過五十多年的發展,知識表示與知識推理領域的許多研究內容、研究方法和研究成果已經深深滲入到計算機科學,進而對計算機學科的發展產生了深遠的影響。例如,在C++、Java等面向對象程序設計語言中,“繼承”這一最為核心的技術就來源于知識表示與知識推理。再如,在軟件自動化領域,許多程序規格語言和程序驗證技術都借鑒了知識表示與知識推理領域的Prolog語言等研究成果。從工程開發的角度看,專家系統、智能搜索引擎、智能控制系統、智能診斷系統、自動規劃系統等具有所謂智能特征的系統都或多或少地依賴于知識表示與知識推理技術。因此,對于計算機專業的學生來說,學習知識表示與知識推理方面的課程,對于今后在相關領域從事系統開發和科學研究都大有裨益。
在ACM與IEEE-CS聯合攻關組制訂的計算教程CC2001(Computing Curricula 2001)中,知識表示與知識推理得到了高度重視。CC2001給出的計算機科學知識體由14個知識領域組成:在其中的IS(Intelligent Systems)知識領域中,關于知識表示與知識推理的內容占據了10個知識單元中的2個,即知識單元“(Is3)知識表示與推理”以及知識單元“(IS5)高級知識表示與推理”。在ACM和IEEE-CS進一步修訂后的計算機科學教程CS2008(Computer Science Curriculum 2008)中,知識表示與知識推理同樣得到了高度重視。此外,在我國高等學校計算機科學與技術教學指導委員會制定的計算機專業規范中,上述的IS3和IS5兩個知識單元被全部包括到計算機科學專業的核心課程“人工智能”中。然而,據我們了解,由于“人工智能”在許多高校僅僅作為專業任選課開設,使得計算機相關專業的許多學生無法接觸到知識表示與知識推理方面的內容。與此同時,由于課時數限制及沒有得到重視等因素,實際開設的“人工智能”課程(包括本科生課程和研究生課程)往往難以覆蓋CC2001在知識單元IS3和IS5中列出的各個知識點。
實際上,經過五十多年的發展,知識表示與知識推理領域已經沉淀出一系列基本的方法、理論和技術;這些方法、理論和技術在CC2001的知識單元IS3和IS5中基本上都以知識點的形式列舉了出來。作為計算機專業的教育工作者,我們有責任將這些體現了幾代人智慧結晶的知識介紹給學生。另一方面,從研究者的角度來看,知識表示與知識推理是一個非常活躍的研究領域;尤其是隨著Web技術的發展以及Web科學的出現,知識表示與知識推理將在計算機科學中扮演越來越重要的角色。面對萬維網這個全球最大的分布式信息庫,如何讓計算機對其中海量的數據和信息進行分析、推理和管理,進而為人類提供方便的知識服務,是目前信息技術領域面臨的一個重大問題。針對這個問題,國內外研究者基本上都是從人工智能的角度尋求解決思路;近年來成為研究熱點的語義Web更是完全建立在知識表示與知識推理的基礎上。因此,從開拓學生思維以及介紹研究與技術前沿的角度來看,也非常有必要向學生講授知識表示與知識推理的相關內容。
基于以上認識,我們為計算機軟件與理論專業和計算機應用技術專業一年級的碩士研究生開設了一門32課時的選修課程,以CC2001和CS2008列出的知識單元為核心,對知識表示與知識推理的相關內容進行教學。本文對教學設計和教學實踐中遇到的主要問題進行分析,針對這些問題給出相應的解決對策,并對我們獲得的經驗和教訓進行總結。
1 “知識表示與知識推理”知識體的教學設計
自上世紀九十年代以來,國內外許多高校就將“知識表示與知識推理”作為一門課程,面向研究生或高年級的本科生開設。其中比較著名的包括加拿大多倫多大學Hector J.Levesque教授開設的知識表示課程,美國斯坦福大學Leom Morgenstem教授開設的知識表示課程,英國曼徹斯特大學Ulrike Sattler教授等講授的知識表示和推理課程,中山大學劉詠梅教授講授的知識表示和推理課程等。但是,由于沒有統一的課程設置標準,這些課程講授的知識點都不盡相同。2000年,Leom Morgenstem和Richmond H.Thomason總結了開設知識表示與知識推理課程時面臨的挑戰,提出了相應的解決思路。其中,針對該課程缺乏統一的教學知識體的情況,他們設計了一個持續14周、每周2次課的教學大綱。在文獻[5]中,Leora Morgenstem進一步修訂了之前提出的教學大綱,建議在其中增加語義Web及Web本體語言OWL等內容。
盡管目前各高校開設的知識表示與知識推理課程的課程大綱仍然不盡相同,但比較可喜的是,對知識表示與知識推理的教學在CC2001計算教程中得到了高度重視。CC2001分別在“知識表示與推理”和“高級知識表示與推理”兩個知識單元中列出了關于知識表示與知識推理的教學內容。知識單元“知識表示與推理”由以下知識點組成:命題邏輯和謂詞邏輯回顧,歸結原理與定理證明,非單調推理,概率推理,貝葉斯定理。知識單元“高級知識表示與推理”由以下知識點組成:結構化知識表示(包括對象與框架、描述邏輯和繼承系統),非單調推理(包括非經典邏輯、缺省推理、信念修正、偏好邏輯、知識源的集成、沖突信念的聚合),對動作和變化的推理(包括情景演算、事件演算和分枝問題),時態和空間推理,非確定性推理(包括概率推理、貝葉斯網絡、粗糙集和可能性理論、決策理論),針對診斷的知識表示與定性知識表示。在CC2001的基礎上,CS2008在知識單元“知識表示與推理”中增加了合一與提升、前向鏈接、反向鏈接以及歸結等知識點;在知識單元“高級知識表示與推理”中增加了本體工程和語義網絡兩個 知識點。
以CC2001和CS2008列出的知識點為基礎,在綜合考察了國內外相關課程的開設情況之后,我們對“知識表示與知識推理”課程的教學內容及相應的學時分配設計如下。
1)概述(2學時)。介紹知識表示與知識推理領域的發展歷史、現狀和前景:講授知識表示的基本思路和基本原理;介紹知識表示方法和技術的典型應用:列舉典型的采用了知識表示技術的系統,與沒有采用知識表示技術的系統進行比較分析。
2)基于一階謂詞邏輯的知識表示和推理(4學時)。講授一階謂詞邏輯的語法、語義和語用;通過例子講授如何應用一階謂詞邏輯進行知識表示;講授如何應用消解原理進行知識推理;講授如何應用Tableau算法進行知識推理;分析一階謂詞邏輯存在的局限。
3)Horn子句邏輯與產生式系統(2學時)。講解Horn子句及其過程解釋;介紹SLD歸結以及分別采用反向鏈和正向鏈的推理過程;通過例子講授如何應用Horn子句邏輯進行知識表示和推理;對Prolog語言進行簡單介紹;通過例子介紹如何應用產生式系統進行知識表示和推理。
4)結構化知識表示(6學時)。介紹對象與框架,介紹基本的框架形式系統:介紹語義網絡,對推理過程中的繼承機制進行介紹。介紹描述邏輯家族的研究歷史和發展現狀;以邏輯系統ALC為例,講解描述邏輯的語法和語義;通過例子講授如何應用描述邏輯進行知識表示;講授如何應用Tableau算法對描述邏輯刻畫的知識進行推理。
5)非單調知識表示和推理(4學時)。介紹非單調性推理的研究歷史;講解封閉世界假設與開放世界假設;講解缺省推理和限定推理;對自認知邏輯、偏好邏輯和真值維持系統進行介紹;對信念修正、知識源的集成以及沖突信念的聚合進行介紹。
6)非確定知識表示和推理(4學時)。對模糊邏輯進行介紹;講授概率推理和主觀貝葉斯方法;對粗糙集、可能性理論和決策理論進行介紹。
7)解釋與診斷(2學時)。講授反繹推理的基本思路,將其與演繹推理和歸納推理進行比較分析;以一個電路系統為例,講授如何在知識表示的基礎上采用反繹推理進行故障診斷。
8)動作與規劃(4學時)。介紹動作與規劃領域的研究歷史和發展現狀;講授如何在STRIPS系統中對動作進行刻畫以及如何進行規劃求解:講授如何應用情景演算和事件演算對動作進行刻畫、推理、及規劃求解;對框架問題、條件問題和分枝問題進行介紹;對規劃語言PDDL進行介紹。
9)時態和空間推理(2學時)。對時間點/時間段、離散/連續、有限/無限、線性/分支等表示時態信息的不同方式進行介紹;對Allen的區間代數理論進行介紹;對線性時態邏輯和分支時態邏輯進行介紹;對基于點/基于區域、離散/連續、有限/無限、同維/混合維等表示空間信息的不同方式進行介紹;對區域連接演算RCC進行介紹;對時態與空間推理的結合進行簡單介紹。
10)語義Web和本體工程(2學時)。介紹語義Web的基本思想、技術現狀和發展趨勢;講授語義Web的層次模型以及各個層次的目標和功能;對資源描述框架RDF、Web本體語言OWL、Web規則標記語言RIF、Web查詢語言SPARQL等進行介紹。對本體的構建、管理和維護進行介紹。
上述教學內容的基本特點是覆蓋了CC2001和CS2008列出的關于知識表示與推理的所有知識點。此外,我們將目前作為計算機科學和人工智能領域研究熱點的語義Web等內容引入了課堂教學,不僅可以將相關研究前沿展示在學生面前,而且還可以讓學生更加深刻地體會學習知識表示與知識推理的價值,進一步激發他們的學習熱情。另一方面,上述教學內容存在的一個缺陷是內容過多。由于受到課時數的限制,部分內容在講授時不能充分展開,留給學生課堂練習和討論的時間不充裕。
2 教學實踐中的主要問題及對策
在圍繞“知識表示與知識推理”知識體開展教學實踐時,我們遇到的問題主要來自以下幾個方面:教師和學生對“人工智能”課程以及其中的“知識表示與知識推理”知識體不重視,缺乏合適的教材,學生缺乏必要的基礎知識。下面對這些問題進行逐一分析,對我們采取的對策進行相應介紹。
2.1 師生對“人工智能”課程不重視
許多教師和學生對“人工智能”課程不夠重視,甚至存在偏見。我們覺得,這種現狀很大程度上是由人工智能自身的發展歷程造成的。人工智能領域剛誕生時就被賦予過高的期望;早期的研究者也過于樂觀地給出了一些不切實際的承諾。由于不能在短期內實現過高的目標和兌現相應的承諾,使人工智能領域在上世紀80年代末90年代初一度跌入低谷,甚至達到了聲名狼藉的地步。這一特殊的發展歷程使得一部分對人工智能了解不多的教師和學生產生誤解,認為人工智能是一個比較務虛的領域。這種誤解甚至影響到“人工智能”課程的開設。目前,在許多高校計算機相關專業的課程設置中,“人工智能”往往只作為選修課程開設,沒有得到教師和學生的普遍重視。
實際上,從信息技術發展規律的角度來看,人工智能的上述發展歷程是很正常的。根據市場權威研究機構Gartner給出的“技術成熟度曲線”(hype cycle)理論,一項新的IT技術在產生之后,一般先是默默無聞地奮力發展幾年,然后會由于被大家寄予很高的期望而迅速火爆起來,接著會因為沒能兌現過高的承諾而跌入谷底,最后會再次崛起并由于過硬的成就而被大眾普遍接受。人工智能已經經歷了從默默無聞到迅速火爆再到跌入谷底的發展過程,目前正處于再次崛起的階段,并且將通過不斷取得的成就而被大眾普遍接受。
人工智能的教學在CC2001和CS2008中得到了高度重視。CC2001給出的計算機科學知識體由14個知識領域組成,作為其中的知識領域之一,智能系統(即人工智能)與離散結構、程序設計、操作系統、計算機體系結構等已經得到普遍重視的知識領域具有了相同的地位。在我國高等學校計算機科學與技術教學指導委員會制定的計算機專業規范中,也將“人工智能”作為了計算機科學專業的核心課程。但是,對人工智能相關知識的傳播需要一個長期的過程,仍然需要廣大科研和教育工作者的不懈努力。
2.2 師生對“知識表示與知識推理”知識體不重視
即便部分教師和學生認識到人工智能知識領域的重要性,但對于其中的“知識表示與知識推理”知識體仍然不夠重視,認為沒有必要專門通過一門課程進行教學。
針對這個問題,我們可以對人工智能領域的發展歷程作進一步考察。我們知道,人工智能領域的誕生就是從知識表示和知識推理開始的。在1956年標志著人工智能誕生的Dartmouth會議上,Herbert Simon和Allen Newell展示的“邏輯理論家”就依賴于知識表示和知識推理。在此之后的五十多年中,知識表示與知識推理就一直是人工智能中最為重要的子領域。相 應的一個佐證是,1966年到2009年期間,在獲得圖靈獎的56名科學家中,Marvin Minsky、John Mccarthy、Herbert Simon、Allen Newell、Edward Feigenbaum和Raj Reddy等6名科學家都在知識表示與知識推理領域取得了開創性的研究成果。
知識表示與知識推理的重要性在CC2001和CS2008中同樣得到了體現。CC2001給出的“智能系統”知識領域由以下10個知識單元組成:智能系統中的基本問題、搜索與約束求解、知識表示與推理、高級搜索、高級知識表示與推理、智能主體、自然語言處理、機器學習與神經網絡、人工智能規劃系統、機器人;C$2008在CC200I的基礎上增加了智能感知這個知識單元。其中,關于知識表示和知識推理的教學內容不僅占據了兩個知識單元,而且在智能主體、人工智能規劃系統、機器人等知識單元中也占據了相應的多個知識點的位置。由于32課時的人工智能選修課程通常只能對上述知識單元作一個概要性的介紹,對于想進一步深入學習的學生,在有條件的情況下,我們完全有必要開設一門關于“知識表示與知識推理”的課程。另外,從上一節給出的教學設計可以看出,如果要覆蓋CC2001和CS2008給出的關于知識表示與知識推理的所有知識點,一門32課時的課程在時間上還很不夠用。因此,基于以上分析,我們希望“知識表示與知識推理”的教學首先能夠得到相關教師的認可和重視,然后通過課程設置等途徑逐漸吸引學生的關注,并在教學過程中激發起學生的學習興趣和熱情。
2.3 缺少合適的教材
盡管CC2001和CS2008詳細地列出了關于知識表示與知識推理的主要知識點,但是,據我們所知,目前還沒有出現完全覆蓋這些知識點的合適教材,而中文的相關教材更是缺乏。
在參考了多方面的資料之后,我們選擇了Ronald Brachman和Hector Levesque撰寫的《Knowledge Representation and Reasoning》作為教材。Ronald Brachman和Hector Levesque都是知識表示與知識推理領域的著名學者。其中,Ronald Brachman于1977年在哈佛大學攻讀博士學位時提出了KL-ONE系統,開創了目前成為研究熱點的描述邏輯領域,之后于2003年擔任了美國人工智能學會的主席,目前是ACM院士、雅虎全球研究運營副總裁。Hector Levesque在知識表示領域也做出了許多開創性的研究成果,曾于2001年擔任人工智能頂級會議IJCAI的主席,于2006年當選加拿大皇家學會會士。除了時態和空間推理以及本體工程這兩個知識點之外,CC2001和CS2008中列出的其他關于知識表示與知識推理的知識點,在《Knowledge Representation and Reasoning》中都基本上得到了體現。另外,為了在課程中向學生介紹語義Web方面的知識,我們選擇了Grigoris Antoniou和Frank van Harmelen撰寫的《A Semantic Web Primer》作為參考書目。
2.4 學生缺乏必需的基礎知識
知識表示與知識推理的核心思想是采用形式語言(尤其是邏輯語言)對知識進行刻畫和推理,因此要求學生在學習該課程前具有扎實的數理邏輯基礎知識。
盡管數理邏輯對于整個計算機學科來說具有非常重要的作用,但在目前計算機相關專業的課程設置中,數理邏輯往往只作為離散數學課程的一個部分進行教學,在課時數量上非常有限。此外,從教材的角度來看,大部分離散數學教材的數理邏輯部分主要介紹命題邏輯的相關知識,而且只介紹命題邏輯聯結詞、范式、等值演算、自然推理系統等最基本的內容;對一階謂詞邏輯以及命題邏輯中更為深入的內容介紹得很少,甚至不介紹。這些內容對于學習知識表示與知識推理知識體來說遠遠不夠。例如,根據我們在講授“知識表示與知識推理”之前的調查,許多研究生對于一階謂詞邏輯的語法與語義等基本概念都還比較模糊,對于消解原理、Tableau方法、可滿足性問題等內容更是沒有接觸過。
針對上述問題,除了原計劃關于一階謂詞邏輯知識表示的4個課時之外,我們臨時增加了2個課時的課堂教學,為學生補充命題邏輯的語法和語義、公式可滿足性問題、Tableau判定算法、基于消解原理的判定算法等內容。由于受到課時的限制,許多重要的結論及其證明過程無法在課堂上詳細闡述。
值得一提的是,由于研究課題的需要,我們組織部分研究生一起學習了John Bell和Moshe Machover撰寫的著名教材《A Course in Mathematical Logic》。在學習這本教材時,我們將研究生分為三個小組,讓各個小組自學該教材,對其中的引理、定理以及問題(Problem)進行證明或求解,然后在每周一次的學習班上使用黑板講解他們的證明或求解過程。在3個月的時間里,將這本教材中的第一章和第二章學完后,這些研究生的數理邏輯知識明顯上了一個臺階。在之后學習知識表示與知識推理的過程中,這部分研究生的學習效果也明顯好得多。在今后的教學中,我們希望計算機相關專業的研究生能夠先學習一門數理邏輯方面的課程,然后再學習知識表示與知識推理課程。
3 結語