前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇傳感器論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
本文工作中設計的便攜式電場傳感器標定裝置,其基本結構由兩個平行極板構成,標定裝置的下極板開有圓孔,并采用特殊夾具固定被檢電場傳感器。被檢電場傳感器的動片與標定裝置的下極板平齊,使得被檢電場傳感器無需進入標定裝置的上、下極板之間的空間,即可感應到其電場。
2電場傳感器標定裝置結構參數的優化設計分析
基于有限元的相關理論,首先對標定裝置的機械結構建立模型。黃色部分為標定裝置,藍色部分為電場傳感器。然后,對幾何模型進行單元剖分、加載,可求解出標定裝置兩極板間的電場分布情況。根據求得的電場分布情況,可進行標定裝置結構參數的設計。在計算求解過程中,改變加載在兩極板間的電壓,使兩極板間形成的電場強度的理論值始終為20kV/m。被標定的場磨式電場傳感器外殼直徑8cm,感應片直徑6cm,傳感器外殼與標定裝置的下極板接觸。
2.1標定裝置極板間距和極板直徑對電場的影響研究
在標定裝置的設計上,受限于被檢電場傳感器的尺寸,以及要考慮標定裝置的便攜性,把標定裝置的極板直徑L固定為16cm。在L固定的條件下,分析兩極板間距H對極板間電場強度的影響,并以此確定極板間距H。依照圖2所建立的模型,取H值分別為1cm,2cm,3cm,4cm和5cm,,。橫坐標是電場傳感器感應片距離標定裝置中心的橫向距離,單位為m;縱坐標是感應片某一位置處的電場強度,單位是V/m。同時,在感應片的敏感范圍(x<0.03m)內,電場強度并非恒定值,而是隨著與標定裝置中心距離的增加發生了畸變。圖6為極板間電場強度實際值的畸變情況。理想情況下,在感應片的敏感范圍內,電場強度應保持不變,但由于標定裝置中極板邊緣效應的存在,使得感應片敏感區域內的電場不是一個恒定值,距離電場傳感器的外殼越近,畸變程度越大。定義在感應片敏感范圍(x<0.03m)內各個位置處電場強度的平均值與理論值之比為電場強度的畸變率,并用該值來衡量電場強度的變化程度。畸變率越小,說明所產生的電場越接近均勻分布。綜上,在極板直徑固定為16cm時,極板間距為5cm時,電場強度的實際值與理論值最為接近,且在電場傳感器感應片感應區域內電場的畸變最小。同時,在保證H/L小于0.5的條件下,極板直徑L對實際電場的影響非常小。
2.2傳感器外殼與標定裝置的相對位置研究
當標定裝置與被檢電場傳感器配合不好時,容易使被檢電場傳感器相對于標定裝置發生傾斜。模型中,極板直徑為16cm,極板間距為1cm,傾斜角度為1.5°。標定裝置的傾斜,會對被檢電場傳感器感應片上方的電場分布造成較大影響。圖9是基于圖8的傾斜模型計算得到的感應片上方的電場強度的橫向分布。由于相對傾斜后,模型不再對稱,因此分析了整個感應片上方(-3cm~3cm)的電場強度的橫向分布,并將結果與沒有相對傾斜時的感應片上方電場分布作了比較。被檢電場傳感器與標定裝置在相對傾斜角為1.5°時的電場的畸變情況,比沒有相對傾斜時嚴重。有相對傾斜時,感應片上方電場分布更加不均勻,因而被檢電場傳感器與標定裝置間的相對傾斜會對標定結果產生較大影響。在標定裝置設計中,應使標定裝置與被檢電場傳感器的外殼的直徑盡可能接近(極限情況是外徑與孔徑的差值為零),以使得兩者緊密結觸,從而保證被檢電場傳感器與標定裝置之間不會發生相對傾斜。
3便攜式標定裝置的優化設計和實驗結果分析
當輸出為-3kV至+3KV的可調直流電源加在兩極板上時,兩極板間的電場強度理論值的范圍為-60kV/m~+60kV/m。使用在標準標定裝置中標定好的電場傳感器測量本文工作中所設計的便攜式標定裝置中的實際電場。實測電場強度與所加電源電壓之間有良好的線性關系,同時,實測電場小于理論電場,兩者的比值約為0.92,這與給出的仿真結果吻合。在野外的實際標定過程中,保持被檢電場傳感器與標定裝置的位置不變,使得電場強度理論值與實際值的比值保持不變,在此基礎上,可以通過加在兩極板間的電壓計算出電場強度的理論值,計算出電場強度的實際值。然后,通過電場強度實際值與被檢電場傳感器輸出值兩者間的關系,計算出被檢電場傳感器的靈敏度,實現對被檢電場傳感器的標定。經過較長時間的現場使用,所研發的便攜式標定裝置能夠方便、快捷地對場磨式電場傳感器進行校準。目前,該校準裝置已經應用于中國電力科學研究院特高壓直流實驗基地高壓直流輸電線路地面合成電場測量系統中,并已取得了良好的效果。
4結論
關鍵詞:氧傳感器故障檢查
目前,實際應用的氧傳感器有氧化鋯式氧傳感器和氧化鈦式氧傳感器兩種。而常見的氧傳感器又有單引線、雙引線和三根引線之分,;單引線的為氧化鋯式氧傳感器;雙引線的為氧化鈦式氧傳感器;三根引線的為加熱型氧化鋯式氧傳感器,原則上三種引線方式的氧傳感器是不能替代使用的。其中應用最多的是氧化鋯式氧傳感器。
一、氧化鋯式氧傳感器的構造
在使用三元催化轉換器以減少排氣污染的發動機上,氧傳感器是必不可少的元件。氧傳感器位于排氣管的第一節,在催化轉化器的前面。氧傳感器有個二氧化鋯(一種陶瓷)制造的元件,其里外都鍍有一層很薄的白金。陶瓷化鋯體在一端用鍍薄鉑層來封閉。后者到保護套中,并安裝在一個金屬體內。保護套起到進一步保護作用并使傳感器得以安裝到排氣歧管上。陶瓷體外部暴露在排氣中,而內部與環境大氣相通。
這個元件低溫時有很高的電阻,所以溫度低時不允許電流通過。但高溫時,由于空氣中和廢氣中氧的濃度差異,氧離子卻能通過這個元件。這就產生了電位差,白金將其放大。這樣,空燃比低于理論空燃比(較濃)時,在氧傳感器元件內(廢氣)外(大氣)之間有較大的氧氣濃度差。于是,傳感器產生一相對較強的電壓(約翰遜伏)。另一方面,如果混合氣稀,大氣和廢氣之間氧濃度差很小,傳感器也就只產生一相對較弱的電壓(接近0伏)。
由于混合氣的空燃比一旦偏離理論空燃比,三元催化劑對CO、HC和NOX的凈化能力將急劇下降,故在排氣管中安裝氧傳感器,用以檢測排氣中氧的濃度,并向ECU發出反饋信號,再由ECU控制噴油器噴油量的增減,從而將混合氣的空燃比控制在理論值附近。
二、汽車氧傳感器的工作原理
氧傳感器安裝在排氣歧管上,它可以檢測廢氣中的氧氣濃度,據此計算空燃比,并將結果傳送到ECU。
例如:
1、廢氣中氧氣濃度高
當廢氣中氧氣的百分比很大時,ECU將據此判定空燃比大,即混合氣很稀。
2、廢氣中氧氣濃度低
當廢氣中氧氣的百分比很小時,ECU將據此判定空燃比小,即混合氣很濃。溫度高于300℃時,所采用的陶瓷材料,用作氧化鐵的導體。在此條件下,如果傳感器兩側氧的百分比含量不同,就會在兩端產生電壓變化。兩種環境(空氣側和排氣側)中不同含氧量的測量值的這種變化告訴ECU,在排氣中剩余的氧含量,對保證燃燒有害廢氣生成是不合適的百分比。陶瓷材料在低于300℃溫度時是非線性的,因而傳感器不輸送有用信號。ECU有一個特殊功能,即在曖機時(開環運轉)停止對混合氣的調整。傳感器裝有加熱元件以盡快達到工作溫度。當電流流過加熱元件時,它縮短了使陶瓷成為鐵的導體的時間,而且使得傳感器可以裝在排氣管較后的部位。
在三元催化凈化器中,ECU利用來自氧傳感器的數據,調節空燃比,但其方法EFI裝置各標準化油器多少有些不同。
在EFI裝置中,EFI的ECU通過增減從噴油噴入氣缸的燃油量,調節空燃比。如果ECU從氧傳感器檢測到混合氣太濃,就會逐漸減少燃油噴射量,于是混合氣就變稀了。實際空燃比因此變得比理論空燃比大些(稀些)。發生這種情況時,ECU通過氧傳感器測出這個事實,就會開始逐漸增加噴射量。這樣,空燃比就會孌得低些(濃些)直到低于理論空燃比。于是,這樣循環反復,ECU主濁以這種方式,不斷地增減空燃比,使實際空燃比接近理論空燃比。
在使用化油器的裝置中,是用調節進入進氣口的空氣量調節空燃比。混合氣通常保持略濃理論空燃比。ECU內氧傳感器不斷得到空燃比的信息,并要據實際空燃比操縱EBCU(電控進氣閥)調節進入化油器進氣口的空氣量。如果混合氣太濃,就允許較多空氣進入,使其變稀:如果混合氣太稀,就允許較少空氣進入,使其變濃些。
三、汽車氧傳感器的常見故障
氧傳感器一旦出現故障,將使電子燃油噴射系統的電腦不能得到排氣管中氧濃度的信息,因而不能對空燃比進行反饋控制,會使發動機油耗和排氣污染增加,發動機出現怠速不穩、缺火、喘振等故障現象。因此,必須及時地排除故障或更換。
1、氧傳感器中毒
氧傳感器中毒是經常出現的且較難防治的一種故障,尤其是經常使用含鉛汽油的汽車,即使是新的氧傳感器,也只能工作幾千公里。如果只是輕微的鉛中毒,接著使用一箱不含鉛的汽油,就能消除氧傳感器表面的鉛,使其恢復正常工作。但往往由于過高的排氣溫度,而使鉛侵入其內部,阻礙了氧離子的擴散,使氧傳感器失效,這時就只能更換了。
另外,氧傳感器發生硅中毒也是常有的事。一般來說,汽油和油中含有的硅化合物燃燒后生成的二氧化硅,硅橡膠密封墊圈使用不當散發出的有機硅氣體,都會使氧傳感器失效,因而要使用質量好的燃油和油。修理時要正確選用和安裝橡膠墊圈,不要在傳感器上涂敷制造廠規定使用以外的溶劑和防粘劑等
2、積碳
由于發動機燃燒不好,在氧傳感器表面形成積碳,或氧傳感器內部進入了油污或塵埃等沉積物,會阻礙或阻塞外部空氣進入氧傳感器內部,使氧傳感器輸出的信號失準,ECU不能及時地修正空燃比。產生積碳,主要表現為油耗上升,排放濃度明顯增加。此時,若將沉積物清除,就會恢復正常工作。
3、氧傳感器陶瓷碎裂
氧傳感器的陶瓷硬而脆,用硬物敲擊或用強烈氣流吹洗,都可能使其碎裂而失效。因此,處理時要特別小心,發現問題及時更換。
4、加熱器電阻絲燒斷
對于加熱型氧傳感器,如果加熱器電阻絲燒蝕,就很難使傳感器達到正常的工作溫度而失去作用。
5、氧傳感器內部線路斷脫。
四、汽車氧氣傳感器的檢查方法
1、氧傳感器加熱器電阻的檢查
拔下氧傳感器線束插頭,用萬用表電阻檔測量氧傳感器接線端中加熱器接柱與搭鐵接柱之間的電阻,其阻值為4-40Ω(參考具體車型說明書)。如不符合標準,應更換氧傳感器。
2、氧傳感器反饋電壓的測量
測量氧傳感器的反饋電壓時,應拔下氧傳感器的線束插頭,對照車型的電路圖,從氧傳感器的反饋電壓輸出接線柱上引出一條細導線,然后插好線束插頭,在發動機運轉中,從引出線上測出反饋電壓(有些車型也可以由故障檢測插座內測得氧傳感器的反饋電壓,如豐田汽車公司生產的系列轎車都可以從故障檢測插座內的OX1或OX2端子內直接測得氧傳感器的反饋電壓)。
對氧傳感器的反饋電壓進行檢測時,最好使用具有低量程(通常為2V)和高阻抗(內阻大于10MΩ)的指針型萬用表。具體的檢測方法如下:
1)將發動機熱車至正常工作溫度(或起動后以2500r/min的轉速運轉2min);
2)將萬用表電壓檔的負表筆接故障檢測插座內的E1或蓄電池負極,正表筆接故障檢測插座內的OX1或OX2插孔,或接氧傳感器線束插頭上的號|出線;
3)讓發動機以2500r/min左右的轉速保持運轉,同時檢查電壓表指針能否在0-1V之間來回擺動,記下10s內電壓表指針擺動的次數。在正常情況下,隨著反饋控制的進行,氧傳感器的反饋電壓將在0.45V上下不斷變化,10s內反饋電壓的變化次數應不少于8次。如果少于8次,則說明氧傳感器或反饋控制系統工作不正常,其原因可能是氧傳感器表面有積碳,使靈敏度降低所致。對此,應讓發動機以2500r/min的轉速運轉約2min,以清除氧傳感器表面的積碳,然后再檢查反饋電壓。如果在清除積碳可后電壓表指針變化依舊緩慢,則說明氧傳感器損壞,或電腦反饋控制電路有故障。
4)檢查氧傳感器有無損壞
拔下氧傳感器的線束插頭,使氧傳感器不再與電腦連接,反饋控制系統處于開環控制狀態。將萬用表電壓檔的正表筆直接與氧傳感器反饋電壓輸出接線柱連接,負表筆良好搭鐵。在發動機運轉中測量反饋電壓,先脫開接在進氣管上的曲軸箱強制通風管或其他真空軟管,人為地形成稀混合氣,同時觀看電壓表,其指針讀數應下降。然后接上脫開的管路,再拔下水溫傳感器接頭,用一個4-8KΩ的電阻代替水溫傳感器,人為地形成濃混合氣,同時觀看電壓表,其指針讀數應上升。也可以用突然踩下或松開加速踏板的方法來改變混合氣的濃度,在突然踩下加速踏板時,混合氣變濃,反饋電壓應上升;突然松開加速踏板時,混合氣變稀,反饋電壓應下降。如果氧傳感器的反饋電壓無上述變化,表明氧傳感器已損壞。
另外,氧化鈦式氧傳感器在采用上述方法檢測時,若是良好的氧傳感器,輸出端的電壓應以2.5V為中心上下波動。否則可拆下傳感器并暴露在空氣中,冷卻后測量其電阻值。若電阻值很大,說明傳感器是好的,否則應更換傳感器。
5)氧傳感器外觀顏色的檢查
從排氣管上拆下氧傳感器,檢查傳感器外殼上的通氣孔有無堵塞,陶瓷芯有無破損。如有破損,則應更換氧傳感器。
通過觀察氧傳感器頂尖部位的顏色也可以判斷故障:
①淡灰色頂尖:這是氧傳感器的正常顏色;
②白色頂尖:由硅污染造成的,此時必須更換氧傳感器;
③棕色頂尖:由鉛污染造成的,如果嚴重,也必須更換氧傳感器;
④黑色頂尖:由積碳造成的,在排除發動機積碳故障后,一般可以自動清除氧傳感器上的積碳。
結束語:為了節能和防止汽車污染,西方發達國家大都裝有氧傳感器,對我國來說裝汽車用氧傳感器勢在必行。我國汽車工業同國外的主要差距之一,也表現在汽車傳感器方面。因此,可得出氧傳感器推廣應用的前景十分樂觀。
參考文獻:
【1】王銀.陳丙辰.汽車傳感器使用與檢修.北京:金盾出版社2002
關鍵詞:傳感器精度溫度補償徑向基函數神經網絡溫度傳感器DSl8B20
一般工業測控現場的環境溫度變化急劇,傳感器大多數都對溫度有一定的敏感度,這樣就會使傳感器的零點和靈敏度發生變化,從而造成輸出值隨環境溫度的變化而變化,導致測量出現附加誤差,因此溫度補償問題一直是工業測控系統中的關鍵環節[1]。本文采用DSl8B20智能溫度傳感器和RBF神經網絡相結合的溫度補償新方法來實現傳感器高精度溫度補償。本文介紹的方法將DSl8B20測量值作為溫度補償輸入,將傳感器本身的測量值作為另一輸入,用RBF神經網絡構成雙輸入單輸出的補償模型,輸出即為補償后的測量值。RBF神經網絡主要用于傳感器的數據處理,以改善傳感器測量精度。
1DSl8B20數字溫度傳感器測溫原理
1.1DSl8B20的特性
DSl8B20是美國DALLAS公司繼DSl820之后推出的增強型單總線數字溫度傳感器,它在測溫精度、轉換時間、傳輸距離、分辨率等方面較DSl820有了很大的改進,這給用戶帶來了更方便的使用和更令人滿意的效果。其特點如下:
(1)單線接口:僅需一根口線與單片機連接;
(2)由總線提供電源,也可用數據線供電,電壓范圍:3.0~5.5V;
(3)測溫范圍為:-55~+125℃,在-10~+85℃時,精度為0.5℃;
(4)可編程的分辨率為9~12位,對應的分辨率為0.5~0.0625℃;
(5)用戶可編程的溫度報警設置;
(6)12位分辨率時最多在750ms內把溫度值轉換為數字量。
1.2DSl820引腳功能說明
DSl820的PR-35封裝形式見圖1,其外表看起來像三極管。另外還有8腳SOIC封裝形式,只用3、4和5腳,其余為空腳或不需連接引腳。不過最常見的形式是PR-35封裝,其引腳說明如表1所示。
表1DS1820引腳說明
8腳SOICPR-35符號說明
51GND地
42DQ單線數據輸入輸出引腳
33VDD正電源,一般為+5V
1.3DSl820溫度數據格式
在DSl820中,轉換溫度值是以9位二進制形式表示的,而輸出溫度則是以16位符號擴展的二進制補碼讀數形式提供。采用的辦法是將低八位用補碼表示,第九位以符號擴展形式擴展至其它七位。具體溫度表示格式見表2。
表2溫度/數據關系
溫度數字輸出(二進制)數字輸出(十六進制)
+125000000001111101000FAH
+2500000000001100100032H
+1/200000000000000010001H
+000000000000000000000H
-1/21111111111111111FFFFH
-251111111111001110FFCEH
-551111111110010010FF92H
在實際應用中,測量溫度往往在0℃以上,此時可只取16位二進制溫度輸出的低8位,即1個字節,這樣將使計算和編程工作更為便利。
1.4DSl8B20的測溫原理
DSl8B20的測溫原理為:內部計數器對一個受溫度影響的振蕩器的脈沖計數,低溫時振蕩器的脈沖可以通過門電路,而當到達某一設置高溫時,振蕩器的脈沖無法通過門電路。計數器設置為-55℃時的值,如果計數器到達0之前門電路未關閉,則溫度寄存器的值將增加,這表示當前溫度高于-55℃。同時,計數器復位在當前溫度值上,電路對振蕩器的溫度系數進行補償,計數器重新開始計數直到回零。如果門電路仍然未關閉,則重復以上過程。溫度轉換所需時間不超過750ms,得到的溫度值的位數因分辨率不同而不同[2]。DSl8B20同AT89C52單片機的接口電路如圖2所示。這種接口方式只需占用單片機一根口線,與智能儀器或智能測控系統中的其它單片機或DSP的接口也可采用類似的方式。
2RBF神經網絡及學習算法
RBF神經網絡即徑向基函數(RadialBasisFunction)神經網絡[3~4],其結構如圖3所示。它很容易擴展到多輸出節點的情形,在此只考慮一個輸出變量Y的情況。
RBFNN包括一個輸入層、一個隱含層和一個輸出層的最簡模式。隱含層由一組徑向基函數構成,與每個隱含層節點相關的參數向量為Ci(即中心)和σi(即寬度)。徑向基函數有多種形式,一般取高斯函數[5]。具體如下:
上式中,m是隱含層結點數;·是歐幾里德范數;X,Ci∈Rn,ωi是第i個基函數與輸出結點的連接權值(i=1,2…,m)。
RBF神經網絡是一種性能良好的前向網絡,它具有最佳逼近性能,在結構上具有輸出一權值線性關系、訓練方法快速易行、不存在局部最優問題的特點。該網絡的學習算法有很多種,本文將帶遺忘因子的梯度下降法應用于RBF神經網絡的參數調整[6],即在考慮當前時刻(k時刻)的網絡狀態的變化時,將前一個時刻(k—1時刻)的網絡參數變化也包括進去。其具體算法如下:
上式中,m是隱含層結點數;||·||是歐幾里德范數;X,Ci∈Rn,ωi是第i個基函數與輸出結點的連接權值(i=1,2,…,n)。
RBF神經網絡是一種性能良好的前向網絡,它具有最佳逼近性能,在結構上具有輸出一權值線性關系、訓練方法快速易行、不存在局部最優問題的特點。該網絡的學習算法有很多種,本文將帶遺忘因子的梯度下降法應用于RBF神經網絡的參數調整,即在考慮當前時刻(k時刻)的網絡狀態的變化時,將前一個時刻(k-1時刻)的網絡參數變化也包括進去。其具體算法如下:
其中,J為誤差函數,Y(k)代表希望的輸出,Y(W,k)為網絡的實際輸出,W是網絡的所有權值組成的向量。
隱層一輸出層連接權值矩陣的調整算法為:
其中,μ(k)為學習率,α(k)為動量因子,也稱為遺忘因子,又稱動量項或阻尼項。將其稱為遺忘因子可從對于新舊信息的學習與遺忘的角度來理解;稱為動量項或阻尼項是因為在網絡的學習訓練中,此項相當于阻尼力,當訓練誤差迅速增大時,它使網絡發散得越來越慢。總之,它使網絡的變化趨于穩定,有利于網絡的收斂。
3測試方法及推廣應用分析
實驗中以測量壓力為例,采用Honeywell的24PCG—FAlG型壓力傳感器。將傳感器測量值和DSl8B20的輸出值作為網絡輸入層節點的輸入,與其對應的壓力是網絡輸出層節點的輸出。采用的RBF神經網絡為三層網絡結構,其中,輸入層有2個節點,隱含層有8個節點,輸出層有1個節點。基于上一節中提到的網絡參數調整算法,通過調整RBF網絡中的可調參數(隱層節點數、學習速率、遺忘因子和網絡權值、隱層標準偏差等)進行網絡的訓練和測試,并采用均方根(RMS)計算其訓練精度和測試精度。共采集樣本數據120組,其中72組作為網絡訓練樣本,48組作為網絡測試樣本,在環境溫度變化范圍為-5℃~75℃時,最佳RBF的神經網絡的訓練精度為0.048%,測試精度為0.062%。同時基于獲得的實驗數據,采用最小二乘擬合方法建立的數學模型,其擬合精度為0.170%;用單片機直接預存線性插值補償的方法,測試精度為0.280%。
關鍵詞:轉速傳感器;磁阻;電磁干擾濾波器;KMI15
轉速屬于常規電測參數。測量轉速時經常采用磁阻式傳感器或光電式傳感器進行非接觸性測量,傳統的磁阻式傳感器是由磁鋼、線圈等分立元件構成的,亦可用耳塞機改裝而成。但這種傳感器存在一些缺點:第一,靈敏度低,傳感器與轉動齒輪的最大間隙(亦稱磁感應距離)只有零點幾毫米;第二,在測量高速旋轉物體的轉速時,因安裝不牢固或受機械振動,容易與齒輪發生碰撞,安全性較差;第三,這種傳感器所產生的是幅度很低且變化緩慢的模擬電壓信號,因此,需要經過放大、整形后變成沿口陡直的數字頻率信號,才能送給數字轉速儀或數字頻率計測量轉速,而且電路比較復雜;第四,它無法測量非常低(接近于零)的轉速,因為這時磁阻式傳感器可能檢測不到轉速信號。
目前,轉速傳感器正朝著高靈敏度、高可靠性和全集成化的方向發展,典型產品有飛利浦(Philips)公司生產的KMI15系列磁阻式集成轉速傳感器。該傳感器性能優良,安全性好,穩定性強,是分立式轉速傳感器理想的升級換代產品。KMI15系列包括KMI15-1、KMI15-2、KMI15-4等型號,它們的工作原理相同,僅性能指標略有差異。下面就以KMI15-1為例來介紹該系列集成轉速傳感器的工作原理與具體應用方法。
1KMI15-1型傳感器的性能特點
KMI15-1芯片內含高性能磁鋼、磁敏電阻傳感器和IC。它利用IC來完成信號變換功能,其輸出的電流信號頻率與被測轉速成正比,電流信號的變化幅度為7mA~14mA。由于其電路比較簡單,因而很容易配二次儀表測量轉速。
KMI15-1器件的測量范圍寬,靈敏度高,它的齒輪轉動頻率范圍是0~25kHz,而且即使在轉動頻率接近于零時,它也能夠進行測量。傳感器與齒輪的最大磁感應距離為2.9mm(典型值),由于與齒輪相距較遠,因此使用比較安全。
該傳感器抗干擾能力強,同時具有方向性,它對軸向振動不敏感。另外,芯片內部還有電磁干擾(EMI)濾波器、電壓控制器以及恒流源,從而保證了其工作特性不受外界因素的影響。
KMI15-1的體積較小,其最大外形尺寸為8×6×21mm,能可靠固定在齒輪附近。
KMI15采用+12V電源供電(典型值),最高不超過16V。工作溫度范圍寬達-40~+85℃。
圖2圖3
2工作原理
KMI15-1型集成轉速傳感器的外形如圖1所示,它的兩個引腳分別為UCC(接+12V電源端)和U-(方波電流信號輸出端)。為使IC處于較低的環境溫度中,設計時專門將IC與傳感元件分開,以改善傳感器的高溫工作性能。
該傳感器的簡化電路如圖2所示。其內部主要包括以下六部分:
(1)磁敏電阻傳感器;
(2)前置放大器A1;
(3)施密特觸發器;
(4)開關控制式電流源;
(5)恒流源;
(6)電壓控制器。實際上,該傳感器是由4只磁敏電阻構成的一個橋路,可固定在靠近齒輪的地方,其測量原理如圖3所示。
當齒輪沿Y軸方向轉動時,由于氣隙處的磁力線發生變化,磁路中的磁阻也隨之改變,從而可在傳感器上產生電信號。此外,該傳感器具有很強的方向性,它對沿Y軸轉動的物體十分敏感,而對沿Z軸方向的振動或抖動量很不敏感。這正是測量轉速所需要的。
工作時,傳感器產生的電信號首先通過EMI濾波器濾除高頻電磁干擾,然后經過前置放大器,再利用施密特觸發器進行整形以獲得控制信號UK,并將其加到開關控制式電流源的控制端。KMI15-1的輸出電流信號ICC是由兩個電流疊加而成的,一個是由恒流源提供的7mA恒定電流IH,另一個是由開關控制式電流源輸出的可變電流IK。它們之間的關系式為:
ICC=IH+IK
當控制信號UK=0(低電平)時,該電流源關斷,IK=0,ICC=IH=7mA。當UK=1(高電平)時,電流源被接通,IK=7mA,從而使得ICC=14mA。圖4給出了從U-端輸出的方波電流信號的波形,其高電平持續時間為t1,周期為T。輸出波形的占空比D=t1/T=50%±20%。上升時間和下降時間分別僅為0.5μs和0.7μs。
KMI15芯片中的電壓控制器實際上是一個并聯調整式穩壓器,可用于為傳感器提供穩定的工作電壓UC。而電阻R3、穩壓管VDZ和晶體管VT1則可構成取樣電路,其中VT1接成射極跟隨器。A2為誤差放大器,VT2為并聯式調整管。這樣,IH在經過R1、R2分壓后可給A2提供基準電壓UREF,從而在UCC發生變化時,由A2對取樣電壓與基準電壓進行比較后產生誤差電壓Ur,同時通過改變VT2上的電流來使UC保持不變。
3KMI15-1的典型應用
3.1安裝方法
KMI15-1應當安裝在轉動齒輪的旁邊。若被測轉動工件上沒有齒輪,亦可在轉盤外緣處鉆一個小孔,套上螺扣,再擰上一個螺桿并用彈簧墊圈壓緊,以防止受震動后松動,并以此代替齒尖獲得轉速標記信號。
3.2典型應用電路
KMI15-1型集成轉速傳感器的典型應用電路如圖5(a)所示。工作時,轉速傳感器輸出方波電流信號,從而在負載電阻RL與負載電容CL上形成電壓頻率信號UO(f),并送至二次儀表。通常取RL=115Ω、CL=0.1μF。需要指出:KMI15-1輸出的是齒輪轉動頻率f(單位是Hz,即次/s)信號,欲得到轉速n(r/min),還應將f除以齒輪上的齒數N,并將時間單位改成分鐘,公式如下:
關鍵詞:無線傳感器網絡;組成;應用;發展
科技發展的腳步越來越快,人類已經置身于信息時代。而作為信息獲取最重要和最基本的技術——傳感器技術,也得到了極大的發展。傳感器信息獲取技術已經從過去的單一化漸漸向集成化、微型化和網絡化方向發展,并將會帶來一場信息革命。具有感知能力、計算能力和通信能力的無線傳感器網絡(WSN,wirelesssensornetworks)綜合了傳感器技術、嵌人式計算技術、分布式信息處理技術和通信技術,能夠協作地實時監測、感知和采集網絡分布區域內的各種環境或監測對象的信息,并對這些信息進行處理,獲得詳盡而準確的信息,傳送到需要這些信息的用戶。
由于WSN的巨大應用價值,它已經引起了世界許多國家的軍事部門、工業界和學術界的廣泛關注,被廣泛地應用于軍事,工業過程控制、國家安全、環境監測等領域。
無線傳感器網絡綜合了傳感器技術、嵌入式計算技術、現代網絡及無線通信技術、分布式信息處理技術等多種領域,是當前計算機網絡研究的熱點。
一、發展概述
早在上世紀70年代,就出現了將傳統傳感器采用點對點傳輸、連接傳感控制器而構成傳感器網絡雛形,我們把它歸之為第一代傳感器網絡。隨著相關學科的不斷發展和進步,傳感器網絡同時還具有了獲取多種信息信號的綜合處理能力,并通過與傳感控制器的相聯,組成了有信息綜合和處理能力的傳感器網絡,這是第二代傳感器網絡。而從上世紀末開始,現場總線技術開始應用于傳感器網絡,人們用其組建智能化傳感器網絡,大量多功能傳感器被運用,并使用無線技術連接,無線傳感器網絡逐漸形成。
無線傳感器網絡是新一代的傳感器網絡,具有非常廣泛的應用前景,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。發達國家如美國,非常重視無線傳感器網絡的發展,IEEE正在努力推進無線傳感器網絡的應用和發展,波士頓大學(BostonUniversity)還于最近創辦了傳感器網絡協會(SensorNetworkConsortium),期望能促進傳感器聯網技術開發。美國的《技術評論》雜志在論述未來新興十大技術時,更是將無線傳感器網絡列為第一項未來新興技術,《商業周刊》預測的未來四大新技術中,無線傳感器網絡也列入其中。可以預計,無線傳感器網絡的廣泛是一種必然趨勢,它的出現將會給人類社會帶來極大的變革。
二、無線傳感器網絡的定義和特點
無線傳感器網絡可以看成是由數據獲取網絡、數據分布網絡和控制管理中心三部分組成的。其主要組成部分是集成有傳感器、數據處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網絡,再將采集來的數據通過優化后經無線電波傳輸給信息處理中心。無線傳感器網絡操作系統Tiny0S141的研制者,JasonHill博士把WSN定義為:
Sensing+CPU+Radio=Thousandsofpotentialapplication
哈爾濱工業大學的李建中教授將WSN定義為:WSN是由一組傳感器節點以自組織的方式構成的有線或無線網絡,其目的是協作地感知、采集和處理網絡覆蓋的地理區域中感知對象的信息,并給觀察者。從硬件上看,WSN節點主要由數據采集單元、數據處理單元、無線數據收發單元以及小型電池單元組成,通常尺寸很小,具有低成本、低功耗、多功能等特點;從軟件上看,它借助于節點中內置傳感器有效探測所處區域的溫度、濕度、光強度、壓力等環境參數以及待測對象的電壓、電流等物理參數,并通過無線網絡將探測信息傳送到數據匯聚中心進行處理、分析和轉發。
WSN與傳統傳感器和測控系統相比具有明顯的優勢。它采用點對點或點對多點的無線連接,大大減少了電纜成本,在傳感器節點端即合并了模擬信號/數字信號轉換、數字信號處理和網絡通信功能,節點具有自檢功能,系統性能與可靠性明顯提升而成本明顯縮減。
無線傳感器網絡具有以下特點:
1、硬件資源有限。WSN節點采用嵌入式處理器和存儲器,計算能力和存儲能力十分有限。所以,需要解決如何在有限計算能力的條件下進行協作分布式信息處理的難題。
2、電源容量有限。為了測量真實世界的具體值,各個節點會密集地分布于待測區域內,人工補充能量的方法已經不再適用。每個節點都要儲備可供長期使用的能量,或者自己從外汲取能量(太陽能)。當自身攜帶的電池的能量耗盡,往往被廢棄,甚至造成網絡的中斷。所以,任何WSN技術和協議的研究都要以節能為前提。
3、無中心。在無線傳感器網絡中,所有節點的地位都是平等的,沒有預先指定的中心,是一個對等式網絡。各節點通過分布式算法來相互協調,在無人值守的情況下,節點就能自動組織起一個測量網絡。而正因為沒有中心,網絡便不會因為單個節點的脫離而受到損害。節點可以隨時加入或離開網絡,任何節點的故障不會影響整個網絡的運行,具有很強的抗毀性。
4、自組織。網絡的布設和展開無需依賴于任何預設的網絡設施,節點通過分層協議和分布式算法協調各自的行為,節點開機后就可以快速、自動地組成一個獨立的網絡。
5、多跳(Multi-hop)路由。WSN節點通信能力有限,覆蓋范圍只有幾十到幾百米,節點只能與它的鄰居直接通信。如果希望與其射頻覆蓋范圍之外的節點進行通信,則需要通過中間節點進行路由。WSN中的多跳路由是由普通網絡節點完成的。
6、動態拓撲。WSN是一個動態的網絡,節點可以隨處移動;一個節點可能會因為電池能量耗盡或其他故障,退出網絡運行;也可能由于工作的需要而被添加到網絡中。這些都會使網絡的拓撲結構隨時發生變化,因此網絡應該具有動態拓撲組織功能。
7、節點數量眾多,分布密集。WSN節點數量大、分布范圍廣,難于維護甚至不可維護。所以,需要解決如何提高傳感器網絡的軟、硬件健壯性和容錯性。
8、傳輸能力的有限性。無線傳感器網絡通過無線電波進行數據傳輸,雖然省去了布線的煩惱,但是相對于有線網絡,低帶寬則成為它的天生缺陷。同時,信號之間還存在相互干擾,信號自身也在不斷地衰減,諸如此類。不過因為單個節點傳輸的數據量并不算大,這個缺點還是能忍受的。
9、安全性的問題。無線信道、有限的能量,分布式控制都使得無線傳感器網絡更容易受到攻擊。被動竊聽、主動入侵、拒絕服務則是這些攻擊的常見方式。因此,安全性在網絡的設計中至關重要。
三、應用現狀
雖然無線傳感器網絡的大規模商業應用,由于技術等方面的制約還有待時日,但是最近幾年,隨著計算成本的下降以及微處理器體積越來越小,已經為數不少的無線傳感器網絡開始投入使用。目前無線傳感器網絡的應用主要集中在以下領域
1.環境的監測和保護
隨著人們對于環境問題的關注程度越來越高,需要采集的環境數據也越來越多,無線傳感器網絡的出現為隨機性的研究數據獲取提供了便利,并且還可以避免傳統數據收集方式給環境帶來的侵入式破壞。
2.醫療護理
無線傳感器網絡在醫療研究、護理領域也可以大展身手。羅徹斯特大學的科學家使用無線傳感器創建了一個智能醫療房間,使用微塵來測量居住者的重要征兆(血壓、脈搏和呼吸)、睡覺姿勢以及每天24小時的活動狀況。英特爾公司也推出了無線傳感器網絡的家庭護理技術。該技術是做為探討應對老齡化社會的技術項目
CenterforAgingServicesTechnologies(CAST)的一個環節開發的。該系統通過在鞋、家具以家用電器等家中道具和設備中嵌入半導體傳感器,幫助老齡人士、阿爾茨海默氏病患者以及殘障人士的家庭生活。利用無線通信將各傳感器聯網可高效傳遞必要的信息從而方便接受護理。而且還可以減輕護理人員的負擔。英特爾主管預防性健康保險研究的董事EricDishman稱,“在開發家庭用護理技術方面,無線傳感器網絡是非常有前途的領域”。
3.軍事領域
由于無線傳感器網絡具有密集型、隨機分布的特點,使其非常適合應用于惡劣的戰場環境中,使其非常適合應用于惡劣的戰場環境中,包括偵察敵情、監控兵力、裝備和物資,判斷生物化學攻擊等多方面用途。
4.商業化用途
無線傳感器網絡還被應用于其他一些領域。比如一些危險的工業環境如井礦、核電廠等,工作人員可以通過它來實施安全監測。也可以用在交通領域作為車輛監控的有力工具。盡管無線傳感器技術目前仍處于初步應用階段,但已經展示出了非凡的應用價值,相信隨著相關技術的發展和推進,一定會得到更大的應用。從應用的情況來看,北美的狀況最好,在樓宇自動化、環境監控等方面,無線傳感器網絡已經開始大展拳腳。超級秘書網
四、需要解決的問題
就目前的技術水平來說,讓無線傳感器網正常運行并大量投入使用還面臨著許多問題:
1.網絡內通信問題。無線傳感器網絡內正常通信聯系中,信號可能被一些障礙物或其他電子信號干擾而受到影響,怎么安全有效的進行通信是個有待研究的問題。
2.成本問題。在一個無線傳感器網絡里面,需要使用數量龐大的微型傳感器,這樣的話成本會制約其發展。
3.系統能量供應問題。目前主要的解決方案有:使用高能電池;降低傳感功率;此外還有傳感器網絡的自我能量收集技術和電池無線充電技術。其中后兩者備受關注。