前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇戰爭中的孩子范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
1937年8月28日,一位記者來到上?;疖囌灸险?,那里一片祥和,人們說說笑笑,臉上露著喜悅,有個一家三口正在那里,媽媽抱著一個男孩,好可愛的小男孩,穿著漂亮的衣服,手里還拿著一個小熊,大概是爸爸剛給他買的。
突然,天空中響起警報聲,大家喊:“鬼子來了!快跑??!”“轟”的一聲巨響,火車站的候車室瞬間倒塌了。日本戰斗機像兇惡的老鷹一樣在天空中飛來飛去。車站里成千上萬的人們驚慌失措,逃得逃,叫的叫,哭的哭,亂成一片。頃刻之間,硝煙滾滾,血肉橫飛。日本戰斗機又放了一枚炸彈,正好落在天橋上,天橋頓時塌了一半。日本侵略者用惡狼般的眼睛盯著廢墟,繼續往下投炸彈,許多人都倒在了血泊之中。
這時,傳來一陣哭聲,聞聲過去,一個二三歲的男孩正在坐在鐵道中間,他在不停地哭嚎,他的哭聲令人揪心,他的衣服已經破爛不堪了,手里抱著爸爸給他買的小熊,他干瘦干瘦的,他的周圍是炸彈碎片,他身上也濺滿了血,滿臉都是灰塵,彈片劃傷了他。他的父母在哪兒?原來,炸彈落下時,男孩的父母用自己的身軀護住了他,同時,一枚炸彈不偏不正地落在了這對夫婦的身上……
幾分鐘前這個男孩還是媽媽懷中的嬌兒,爸爸跟他逗樂,可是幾分鐘后這個孩子就成了無助的孤兒。這個孤獨,可憐的孩子,他以后的生活又會如何?相信他會記住這段歷史,發奮讀書,為振興中華而不懈努力。
你們好!
我的年齡與你們相差不幾,但你們卻被戰火這個惡魔困著,而我卻享受有愛、有幸福的生活。你們是不幸中不不幸,年齡那么小就被抓去充軍、打仗,讓你們那好沒有綻放的花朵枯萎。我不敢想象你們那惡魔般的生活,不知道那么是否害怕,是否悲傷,是否……
我同情你們,我憐憫你們。我與你們相比就好似天壤之別,好似一個生活在天上,一個生活在地獄一樣。我想為你們插上一對翅膀,讓你們逃離那戰爭飛上藍天,與我們一同享受被陽光、被幸福、被愛包裹著的幸福。讓那凋謝的花朵重新綻放出美麗與光彩。
最后,希望在戰火中的孩子們堅強,不要被那戰爭的惡魔嚇倒。———要打敗戰爭的惡魔,打敗戰爭的惡魔!
祝:
你們幸??鞓罚?/p>
我是一個孤獨的孩子,我沒有親人,沒有朋友,所有的一切的一切我都沒有。就連最愛我爸爸媽媽也離我而去了,
1937年8月28日,我們一家走在上?;疖嚹险緯r。突然,天上出現幾個亮點,越來越近,才看清楚是導彈。頓時,人群慌亂。可是導彈還是向火車站炸了過來。在彌漫著硝煙的火車站內,大概只有我一個人活了下來那時我覺得我被整個世界給遺棄了。無論我怎么哭怎么叫,都沒有人回應我。映入我眼簾的卻是一滴滴鮮血和無數的生命,它聯系著一個字,是“殺”。當時我的眼里只有仇恨,殺死日本人,為我的爸爸媽媽報仇血恨。彌漫著的硝煙伴隨著孤零零的我,哭喊聲在火車站內蕩漾。就連天上的云也被染成血紅色了,沒有小鳥的歡叫,再也沒有往日那熱鬧的情景了。
罪惡滔天的日本人,這個仇我一定會報的。如果你們要悔改,那就不要再侵犯我們中國吧!讓我們向全世界呼吁:“要和平不要戰爭。”
北京石景山區西黃村小學四年級:李姍
關鍵詞:趨化因子; 小膠質細胞; 神經炎癥; 阿爾茨海默病;
Progress in research on the role of chemokines and microglia in the neuroinflammation of Alzheimer’s disease
WANG Jia ZHANG Li WEI Heru ZHAI Yueyi LIU Shufeng ZHANG Lianfeng
Hebei Key Lab of Laboratory Animal science, Hebei Medical University Key Laboratory of Human Disease Comparative Medicine, National Health and Family Planning Commission of P.R.C, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College
Abstract:
Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease characterized by dementia as the main symptom. The main neuropathologic features include senile plaques, neurofibrillary tangles, neuroinflammation, and neuron loss. Deposition of amyloid β-protein and misfolded tau protein in patients with AD induces the activation of microglia; this leads to the secretion of cytokines and chemokines, which jointly induce a neuroinflammatory response and affect the progression of AD. This review briefly summarizes the role of microglial activation and chemokine release in the neuroinflammation of AD and provides new insight into the treatment of AD.
Keyword:
chemokines; microglia; neuroinflammation; Alzheimer's disease;
阿爾茨海默病(Alzheimer disease,AD)是一種常見的慢性進行性神經退行性疾病,主要臨床表現為進行性認知功能障礙、精神和行為異常,逐漸發展為無法進行日常生活的嚴重癡呆。AD主要病理學改變有大腦皮質區和海馬區的細胞外β-淀粉樣蛋白(amyloid β-protein,Aβ)沉積形成的老年斑(senile plaques,SP)、神經細胞內過度磷酸化的Tau蛋白錯誤折疊后聚集形成的神經原纖維纏結(neurofibrillary tangles,NFTs)、神經炎癥和神經元丟失[1]。目前,AD的發病原因與發病機制尚不明確,經典的病因假說有Aβ級聯假說和Tau蛋白假說等。越來越多證據顯示神經炎癥在AD發病中具重要作用,神經炎癥是中樞神經系統(central nervous system,CNS)針對各種有害刺激(如損傷或感染)發生的免疫反應,由CNS的神經膠質細胞、內皮細胞和外周的免疫細胞介導并產生細胞因子、趨化因子、活性氧等各種炎性介質共同引起[2]。AD病理研究發現SP附近存在反應性小膠質細胞,同時檢測到AD病人腦實質中炎性細胞因子和趨化因子(chemokine,CK)的水平升高,揭示AD中存在神經炎癥,并參與AD的發病機制[1,3]。AD中的神經炎癥主要以Aβ沉積和錯誤折疊的Tau蛋白對小膠質細胞的持續激活,導致細胞因子和趨化因子等炎性介質的不斷釋放產生的慢性炎癥反應,而釋放的趨化因子誘導小膠質細胞向神經炎癥區域遷移,發揮促炎或抗炎的作用,進而影響AD的發展[4]。因此,本文將重點論述小膠質細胞激活和趨化因子釋放在AD神經炎癥中發揮的作用。
1 小膠質細胞的激活
小膠質細胞是神經膠質細胞的一種,大約占大腦中神經膠質細胞的10%左右。研究表明小膠質細胞起源于卵黃囊的原始巨噬細胞,相當于腦和脊髓中的巨噬細胞[5]。靜息的小膠質細胞以休眠模式監視著周圍組織的免疫狀態,當出現炎癥刺激時,小膠質細胞迅速被激活,通過改變形態遷移至病變部位,清除壞死物質,支持和保護神經系統。激活后的小膠質細胞可以極化為促炎或抗炎表型,分別稱為經典激活小膠質細胞(M1型)和替代激活小膠質細胞(M2型)[6]。M1型為促炎狀態,釋放大量促炎因子(如IL-1β、TNF-α、IFN-γ、CCL2)以及一氧化氮合酶iNOS,活性氧ROS等炎性成分,不斷加劇炎癥反應,引起神經元變性及腦組織損傷。M2型為抗炎狀態,能夠釋放抗炎因子(如IL-4、IL-10、IL-13、YM-1)以及神經營養因子促進炎癥消退,吞噬細胞碎片,促進組織修復并重建體內穩態[6,7,8]。
AD產生的Aβ沉積、錯誤折疊的Tau蛋白及損傷的神經元會吸引小膠質細胞的聚集并引起其激活,同時引起細胞因子和趨化因子的釋放,這些因素與Aβ持續相互作用形成AD中的神經炎癥[9,10]。AD病理研究中發現Aβ可以誘導小膠質細胞的聚集并浸潤在淀粉樣斑塊周圍,Aβ可以作為危險相關分子模式激活小膠質細胞表面模式識別受體如Toll樣受體(Toll-like receptors,TLR),髓樣細胞觸發受體2(triggering receptor expressed on myeloid cells,TREM2),清道夫受體(scavenger receptor,SR-AI/II),補體受體,受體晚期糖基化終產物(receptor advanced glycosylation end product,RAGE)等,引起小膠質細胞的活化、分泌、吞噬等作用[11,12]。Aβ還可以直接以濃度依賴的方式與淀粉樣前體蛋白(amyloid precursor protein,APP)相互作用,共同誘導小膠質細胞的激活并分泌炎性因子TNF-α[13]。Nussbaum等[14]發現Aβ還能誘導Tau蛋白異常聚集,并在細胞內形成NFTs而引發慢性神經炎癥。相關研究報道在AD患者海馬體的NFTs和帶有纏結的神經元附近,以及Tau蛋白轉基因動物模型(TAUSHR72轉基因大鼠和TauR406W轉基因小鼠)中,常出現小膠質細胞的激活,可能的原因是當Tau蛋白發生錯誤折疊后,不斷聚集并在神經元中形成NFTs,破壞神經元的功能并導致細胞最后死亡,引發的炎癥激活小膠質細胞。這些均表明炎癥反應與NFTs之間存在密切關系[10,15,16]。同時激活的小膠質細胞釋放的TNF-α會在體外誘導Tau蛋白的聚集[17]。因此,Aβ沉積和錯誤折疊的Tau蛋白可以通過多種途徑激活小膠質細胞炎癥反應路徑,并進一步影響AD的發生、發展。
靜息的小膠質細胞在AD產生的病理中可以誘導激活為M1型和M2型。目前的研究認為在AD的早期,Aβ沉積將靜止的小膠質細胞激活為M2型,M2型極化的小膠質細胞表現表現出神經保護和抗炎作用,分泌抗炎因子,吞噬、降解、去除Aβ和Tau,抑制炎癥反應。隨著AD病理發展,Aβ和Aβ誘導的促炎因子持續相互作用使小膠質細胞過度活化轉變為M1型,M1型的小膠質細胞表現出神經毒性和促炎作用,釋放大量促炎因子,運動能力下降,吞噬、降解能力減弱,加劇炎癥反應[18,19]。圖1為小膠質細胞在AD中的激活。從圖中發現,AD中激活的M1型小膠質細胞可以引起促炎性趨化因子(CCL2、CCL3、CCL4、CCL5、CXCL1、CXCL8、CXCL9、CXCL10)的分泌,M2型小膠質細胞引起抗炎性趨化因子(CCL22、CXCL8、CXCL12、CX3CL1)的分泌[20,21,22,23]。由此可見,小膠質細胞的極化過程中會引起大量趨化因子的分泌,這些趨化因子與小膠質細胞相互作用,共同影響AD的進程。因此,下文將對趨化因子分類總結并分別展開論述。
圖1 小膠質細胞在AD中的激活過程
2 趨化因子的分泌
趨化因子是一類促使細胞分化、遷移和運輸功能的多肽,能夠激活趨化因子受體,在炎癥過程中誘導趨化、組織外滲以及調節白細胞的功能[24]。趨化因子及其受體在大腦中以低水平表達,受到炎癥刺激才會發生調節作用,其表達主要來源于小膠質細胞及其他神經細胞 [25]。趨化因子根據分子中N-末端半胱氨酸的不同位置分為四個亞家族,包括CXC、CC、C和CX3C。其中CXC趨化因子亞族17個成員,C趨化因子亞族2個成員,CX3C趨化因子亞族1個成員。而CC趨化因子則是趨化因子家族中最大的亞類,包括28個成員,分別為CCL1~CCL28。CXC趨化因子家族成員中CXCL1、CXCL9、CXCL10在AD中上調,參與促炎反應[22,23]。CX3C家族的唯一成員CX3CL1發現具有抑制Tau蛋白病理改變,增加神經信號傳導和神經保護作用[26]。更多的研究發現大量的CC趨化因子在AD中上調,少量因子存在下調或者不變[27],且其受體CCR3,CCR5陽性反應的小膠質細胞與Aβ沉積密切相關[28]。提示了CC趨化因子在AD中可能的重要作用和未來研究方向。因此,本文重點論述CC趨化因子在AD神經炎癥和小膠質細胞的激活中的重要作用。28個CC趨化因子的受體、功能和在AD中的表達變化總結見表1。根據28個CC趨化因子目前已發現的炎癥調節作用將其分為三類:促炎性、抗炎性和雙重功能的趨化因子。分述見表1。
表1 CC趨化因子的功能及其受體
2.1促炎性趨化因子
促炎因子對炎癥的發展有促進作用。大多數表現出促炎作用的趨化因子在AD及其產生的神經炎癥中是上調的,如表1中CCL2、CCL3、CCL4、CCL5、CCL6、CCL9、CCL11、CCL12、CCL15,這些趨化因子不單表現參與炎癥反應,也在AD的病理機制中發揮特有的作用,并且和其本身的氨基酸序列同源性密切相關。
CCL2,又稱為單核細胞趨化蛋白(monocyte chemoattractant protein,MCP-1),由淀粉樣斑塊相關的小膠質細胞產生,Kiyota等[75]的研究發現CCL2過表達的Tg2576(APPswe)/CCL2轉基因小鼠表現出小膠質細胞的聚集和促進Aβ沉積和淀粉樣斑塊形成,并加速了認知障礙。CCL2過表達使rTg4510(tauP301L)轉基因小鼠模型的Tau蛋白病理惡化,表現以NFTs和磷酸化Tau陽性包涵體的大量增加,并伴有膠質細胞增生和明顯的炎癥反應[76]。另一研究表明CCL2在遺忘性輕度認知障礙(amnestic mild cognitive impairment,aMCI)、AD及同樣具有癡呆、腦萎縮特征的額顳葉型失智癥(Frontotemporal dementia,FTLD)患者的腦脊液(cerebrospinal fluid,CSF)中均明顯升高[77,78]。CCL12(MCP-5)是與CCL2(MCP-1)同源的單核細胞趨化因子,具有66%的氨基酸同一性。CCL2與CCL12都是Tau病理相關神經炎癥的壓力應激反應基因[46]。CCL2和CCL12還可以同時與CCR2受體結合,CCR2在小膠質細胞上具有迅速促進嘌呤能受體(purinergic receptor,P2RX4)轉運到細胞表面的能力,進而促進小膠質細胞的胞吐作用[79]。脊髓中星形膠質細胞表達的CCL7(MCP-3)和CCL2(MCP-1)具有大于60%的氨基酸同一性,也可以通過CCR2激活小膠質細胞,產生更多炎性介質引起神經性疼痛[37,80]。根據以上證據說明具有同源性基因的趨化因子可以與同一種受體結合,對炎癥刺激發揮同樣的促炎功能。
然而這一現象并不是完全一致的,有研究報道在212名FTLD患者與203名年齡匹配的對照人群觀察CCL2(MCP-1)A-2518G的單核苷酸多態性(single nucleotide polymorphism,SNP),FTLD患者腦脊液中MCP-1水平顯著高于對照組,MCP-1 A-2518G SNP可能通過影響MCP-1的產生而成為FTLD的保護因子[81]。CCL2和CCL8(MCP-2)同樣具有相似序列的趨化因子,其氨基酸序列同源性為62%,均會在神經退行性疾病中升高[80]。在CCL8中發現SNP與CCL2都位于同一連鎖區,其中rs1163763會導致氨基酸的取代,對蛋白質功能產生潛在的影響,對219名AD患者和209名FTLD患者進行了rs1133763關聯測試,并與231名年齡相匹配的對照組進行比較,發現CCL8 rs1133763的分布在患者和對照組之間沒有顯著差異。這種SNP相關的連鎖不平衡基因變異對神經退行性疾病并無明顯作用[40]。因此,即使是具有同源性基因的趨化因子在神經疾病中也會發揮各自不同的功能。
CCL3/巨噬細胞炎性蛋白-1α(Macrophage inflammatory protein,MIP-1α)和CCL4/巨噬細胞炎性蛋白-1β(Macrophage inflammatory protein,MIP-1β)是巨噬細胞炎性蛋白(MIP-1)的兩種形式,二者相互作用,共用同一受體CCR5,其功能與炎癥反應有關[82]。5XFAD轉基因小鼠中淀粉樣斑塊相關的小膠質細胞表現出免疫反應過度和炎癥的高反應性,同時發現促炎因子CCL3、CCL4、CCL6的表達[9]。Passos等[83]的研究也發現在小鼠側腦室注射Aβ1–40后,CCL3及其受體CCR5的表達水平升高,小膠質細胞的數量也顯著增加。遺傳方面CCL3/MIP-1α的基因多態性影響中國人對AD的敏感性,其中MIP-1α-906(TA)6/(TA)6基因可能是AD的遺傳危險因素[84]。研究發現AD患者的外周血單核細胞控制著CCL4的產生[85],AD的APPswe/PS1dE9轉基因小鼠大腦的CCL4水平升高與大腦Aβ沉積呈年齡依賴性相關,并增加淀粉樣斑塊周圍星形膠質細胞的活化,放大了炎癥反應[86]。
2.2抗炎性趨化因子
抗炎因子被認為可以減輕炎癥反應。目前明確具有抗炎作用的趨化因子CCL17、CCL18、CCL22在有關AD疾病中的研究較少,但在影響大腦認知、神經炎癥、小膠質細胞的激活等神經系統相關研究中發現了很多可能會影響AD疾病發展的抗炎作用。
CCL17,即胸腺和激活調節趨化因子(thymus and activation-regulated chemokine,TARC),是M2型巨噬細胞的標志物,IL-4可以誘導其在巨噬細胞中形成和上調,激活的M2型巨噬細胞參與吞噬細胞碎片以及抑制炎癥反應[55]。維生素D3可選擇性地增強小膠質細胞HMO6中細胞因子IL-10和CCL17的表達,使小膠質細胞具有抗炎活性,保護神經進行免疫修復[56]。在應對LPS誘導的急性炎癥刺激時,與記憶認知有關的海馬CA1區小膠質細胞的CCL17上調,CCL17可以維持小膠質細胞的靜息狀態,CCL17基因敲除小鼠(CCL17-/-)的小膠質細胞體積減少,并呈現出分枝減少、極性增強的反應形態[87]。一項針對高罹患AD疾病風險的墨西哥裔美國人關于遺忘性輕度認知障礙的生物標記物檢測發現在aMCI病例中血液生物標記物以炎性因子為主,排列前三的標記物分別為TNFα,IL-10和TARC,這些發現提示了炎性因子和aMCI發展至AD的代謝過程可能存在相互作用,還需要對上述炎性因子進一步研究[88]。
CCR4是CCL17和CCL22/巨噬細胞來源的趨化因子(macrophage-derived chemokine,MDC)的共同受體,CCR4的基因敲除小鼠(CCR4-/-)表現出運動和探索行為受損,此時的CCR4與其配體CCL22可能參與了神經元和神經膠質細胞的功能調節[89]。CCL22在實驗性自身免疫性腦脊髓炎(experimental autoimmune encephalomyelitis,EAE)小鼠的大腦中由小膠質細胞產生,通過誘導TH2細胞的歸巢來調節Th1細胞介導的神經炎癥[90]。CCL22同樣具有抗炎活性,在神經系統疾病的脫髓鞘、神經元損傷中,都檢測到了M2型小膠質細胞標志物IL-10、CCL18、CCL22,激活的M2型小膠質細胞有助于免疫抑制,促進神經修復和髓鞘的再生[91]。Movsesyan等的研究團隊[92,93]設計以CCL22作為分子佐劑的AD疫苗PMDC-3Aβ 1-11-PADRE,通過誘發細胞免疫及體液免疫,產生抗炎作用,減輕炎癥反應,協同疫苗產生的抗Aβ抗體共同促進APPSwe/PS1M146V/tauP301L轉基因小鼠大腦中Aβ沉積物的清除,抑制Aβ病理學的積累。
CCL18也稱為替代巨噬細胞活化相關趨化因子-1(alternative macrophage activation associated chemokine,AMAC-1)和巨噬細胞炎性蛋白-4(MIP-4),它與CCL3關系最密切,共享64%的序列同一性,卻沒有激活與CCL3相同的受體,因為CCL18具有獨特的四級結構,可以和CCR8、PITPNM3、GPR30三種受體結合,表現出抗炎性趨化因子的作用。CCL18作為人和靈長類動物獨有的趨化因子,從死亡后人腦組織分離出來的小膠質細胞在IL-4刺激下培養,發現了CCL18上調[94]。在沒有IL-4的刺激,CCL18也可以誘導單核細胞成為M2型巨噬細胞,上調抗炎因子IL-10,并增強巨噬細胞的吞噬能力,清除細胞碎片[57]。
2.3 雙重功能趨化因子
有學者在炎癥相關研究中發現個別趨化因子具有促炎和抗炎的雙重作用,即在不同的炎癥環境中可以表現出促炎狀態也可以表現出抗炎狀態,如CCL1、CCL2、CCL7、CCL13、CCL14、CCL23、CCL24、CCL26。CCL1、CCL2、CCL7在神經炎癥中表現出以促炎作用為主,而另外一些具有雙重功能的趨化因子在AD和神經炎癥中的作用并不十分明確。
CCL23是具有促炎和抗炎雙重功能的趨化因子,在單核細胞中既能被IL-1β和IFN-γ誘導表達,也能由IL-4和IL-13誘導表達,在樹突狀細胞由IL-10誘導使其表達[65]。臨床研究表明AD患者血液中的CCL23高于健康對照者,從輕度認知障礙(mild cognitive impaired,MCI)發展到AD患者的血液及腦脊液檢測數據中發現CCL23呈高進展性,并且在AD遺傳易感因素ApoE ?4等位基因攜帶者血液中檢測到高水平的CCL23,可能與血漿中的炎癥反應有關,預測CCL23可能是輕度認知障礙發展到AD的血液生物炎性標志物[66]。CCL23的受體CCR1,只在與Aβ42陽性的神經炎斑和營養不良性神經元中表達,并且隨臨床疾病的嚴重程度而增加,因此成為AD特有的神經炎性標志物[95]。
CCL26又稱嗜酸性粒細胞趨化因子(Eotaxin-3),已證明IL-4和IL-13可通過JAK1-STAT6途徑上調CCL26的表達,表現出抗炎作用,但同時TNF-α對IL-4增強的CCL26產生協同作用[96]。在EAE大鼠的神經炎癥反應中,CCL26結合CCR3發揮促炎作用,加重腦組織損傷[70]。在輕度認知障礙發展至AD的臨床隨訪研究中發現前驅性AD患者腦脊液中的CCL26顯著高于健康對照者[31]。
3 小結與展望
無論是衰老、遺傳或者環境因素造成的癡呆,都會在AD病理形成的過程中產生神經炎癥。小膠質細胞是大腦中免疫監視器,也是神經炎癥反應的核心。小膠質細胞作為AD清除Aβ的主要途徑,可以抑制淀粉樣蛋白的沉積延緩AD的發展;但炎性持續激活的小膠質細胞會分泌更多的促炎因子,引起神經元的損傷,加速AD的進展。小膠質細胞是AD的疾病發展的一把雙刃劍,如何抑制M1型小膠質細胞的炎性激活,減輕炎癥反應,增加M2型小膠質細胞的神經保護作用,維持穩態的正性平衡成為治療AD疾病的方向。
趨化因子在AD的神經炎癥反應中具有雙向調節的作用,一方面具有促炎作用的趨化因子可以持續激活M1型小膠質細胞分泌更多炎性因子及毒性物質,使小膠質細胞失控,加重炎癥反應,形成惡性循環;另一方具有抗炎作用的趨化因子可以維持M2型小膠質細胞的穩態,增加Aβ內化及降解,減輕炎癥的活躍程度。這是一個高度動態的過程,神經炎癥中的促炎和抗炎因子對于正常細胞組織代謝的動態平衡至關重要,如何維持穩態平衡決定了炎癥反應的發展。AD疾病中的神經炎癥活躍程度由趨化因子、細胞因子等炎性介質所反應,抗炎因子和促炎因子的平衡影響著AD的預后。很多研究將促炎性趨化因子CCL2、CCL3作為MCI發展到AD早期的炎性因子標志物,也有將具有抗炎作用的CCL22作為分子佐劑的AD疫苗,但更多關于趨化因子的研究只是檢測其在AD中的水平變化,并沒有深入探索這些趨化因子對于小膠質細胞或者Aβ誘導神經炎癥的作用機制研究。因此需要明確抗炎性趨化因子控制小膠質細胞表型轉換的機制,進而可以通過增加抗炎性趨化因子的正向作用和減少促炎性趨化因子的負向作用來改善AD的神經炎癥程度,為AD的治療提供新的思路。
參考文獻
[1] Azizi G, Navabi SS, Al-Shukaili A, et al. The role of inflammatory mediators in the pathogenesis of Alzheimer's disease [J]. Sultan Qaboos Univ Med J. 2015, 15(3): e305-e316.
[2] DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details [J]. J Neurochem. 2016, 139(2): 136-153.
[3] Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease [J]. Clin Biochem. 2019, 72: 87-89.
[4] Guedes JR, Lao T, Cardoso AL, et al. Roles of microglial and monocyte chemokines and their receptors in regulating Alzheimer's disease-associated amyloid-β and tau pathologies [J]. Front Neurol. 2018, 9: 549.
[5] Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages [J]. Science, 2010, 330(6005): 841-845.
[6] Varnum MM, Ikezu T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain [J]. Arch Immunol Ther Exp (Warsz). 2012, 60(4): 251-266.
[7] Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states [J]. Br J Pharmacol, 2016, 173(4): 649-665.
[8] 李晶文, 張麗, 張連峰. 小膠質細胞在神經發育和神經退行性疾病中的吞噬作用與調節機制 [J]. 中國比較醫學雜志, 2018, 28(4): 120-126, 102.
[9] Yin Z, Raj D, Saiepour N, et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer's disease [J]. Neurobiol Aging. 2017, 55: 115-122
[10] Kovac A, Zilka N, Kazmerova Z, et al. Misfolded truncated protein τ induces innate immune response via MAPK pathway [J]. J Immunol. 2011, 187(5): 2732-2739.
[11] El Khoury J, Luster AD. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications [J]. Trends Pharmacol Sci, 2008, 29(12): 626-632.
[12] Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer's disease [J]. Cell Mol Neurobiol. 2015, 35(1): 71-83.
[13] Manocha GD, Floden AM, Rausch K, et al. APP regulates microglial phenotype in a mouse model of Alzheimer's disease [J]. J Neurosci, 2016, 36(32): 8471-8486.
[14] Nussbaum JM, Seward ME, Bloom GS. Alzheimer disease: a tale of two prions [J]. Prion. 2013, 7(1): 14-19.
[15] Ikeda M, Shoji M, Kawarai T, et al. Accumulation of filamentous tau in the cerebral cortex of human tau R406W transgenic mice [J]. Am J Pathol. 2005, 166(2): 521-531.
[16] Zilka N, Stozicka Z, Kovac A, et al. Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy [J]. J Neuroimmunol. 2009, 209(1-2): 16-25.
[17] Gorlovoy P, Larionov S, Pham TT, et al. Accumulation of tau induced in neurites by microglial proinflammatory mediators [J]. FASEB J, 2009, 23(8): 2502-2513.
[18] Jimenez S, Baglietto-Vargas D, Caballero C, et al. Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic [J]. J Neurosci, 2008, 28(45): 11650-11661.
[19] Shen Z, Bao X, Wang R. Clinical PET imaging of microglial activation: implications for microglial therapeutics in Alzheimer's disease [J]. Front Aging Neurosci, 2018, 10: 314.
[20] Domingues C, da Cruz E Silva OAB, Henriques AG. Impact of cytokines and chemokines on Alzheimer's disease neuropathological hallmarks [J]. Curr Alzheimer Res, 2017, 14(8): 870-882.
[21] Zuena AR, Casolini P, Lattanzi R, et al. Chemokines in Alzheimer's disease: new insights into prokineticins, chemokine-like proteins [J]. Front Pharmacol, 2019, 10: 622.
[22] Gongora-Rivera F, Gonzalez-Aquines A, Ortiz-Jiménez X, et al. Chemokine profile in Alzheimer's disease: Results from a Mexican population [J]. J Clin Neurosci. 2020, 73: 159-161.
[23] 羅飄, 楚世峰, 朱天碧, 等. 趨化因子參與阿爾茨海默病的研究進展 [J]. 中國藥理學通報, 2017, 33(8): 1051-1055.
[24] Luster AD. Chemokines--chemotactic cytokines that mediate inflammation [J]. N Engl J Med. 1998, 338(7): 436-445.
[25] Liu C, Cui G, Zhu M, et al. Neuroinflammation in Alzheimer's disease: chemokines produced by astrocytes and chemokine receptors [J]. Int J Clin Exp Pathol, 2014, 7(12): 8342-8355.
[26] Finneran DJ, Nash KR. Neuroinflammation and fractalkine signaling in Alzheimer's disease [J]. J Neuroinflammation, 2019, 16(1): 30.
[27] Azizi G, Khannazer N, Mirshafiey A. The potential role of chemokines in Alzheimer's disease pathogenesis [J]. Am J Alzheimers Dis Other Demen, 2014, 29(5): 415-425.
[28] Xia MQ, Qin SX, Wu LJ, et al. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains [J]. Am J Pathol, 1998, 153(1): 31-37.
[29] Akimoto N, Ifuku M, Mori Y, et al. Effects of chemokine (C-C motif) ligand 1 on microglial function [J]. Biochem Biophys Res Commun, 2013, 436(3): 455-461.
[30] Jorda A, Cauli O, Santonja JM, et al. Changes in chemokines and chemokine receptors expression in a mouse model of Alzheimer's disease [J]. Int J Biol Sci, 2019, 15(2): 453-463.
[31] Westin K, Buchhave P, Nielsen H, et al. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer's disease [J]. PLoS One, 2012, 7(1): e30525.
[32] Selenica ML, Alvarez JA, Nash KR, et al. Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain [J]. J Neuroinflammation, 2013, 10: 86.
[33] Skuljec J, Sun H, Pul R, et al. CCL5 induces a pro-inflammatory profile in microglia in vitro [J]. Cell Immunol, 2011, 270(2): 164-171.
[34] Kan AA, de Jager W, de Wit M, et al. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines [J]. J Neuroinflammation, 2012, 9: 207.
[35] Tripathy D, Thirumangalakudi L, Grammas P. RANTES upregulation in the Alzheimer's disease brain: a possible neuroprotective role [J]. Neurobiol Aging, 2010, 31(1): 8-16.
[36] Kanno M, Suzuki S, Fujiwara T, et al. Functional expression of CCL6 by rat microglia: a possible role of CCL6 in cell-cell communication [J]. J Neuroimmunol, 2005, 167(1-2): 72-80.
[37] Li J, Deng G, Wang H, et al. Interleukin-1β pre-treated bone marrow stromal cells alleviate neuropathic pain through CCL7-mediated inhibition of microglial activation in the spinal cord [J]. Sci Rep, 2017, 7: 42260.
[38] Ito S, Sawada M, Haneda M, et al. Amyloid-beta peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line via the PI3K/Akt and/or ERK pathway [J]. Neurosci Res, 2006, 56(3): 294-299.
[39] Xuan W, Qu Q, Zheng B, et al. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines [J]. J Leukoc Biol, 2015, 97(1): 61-69.
[40] Villa C, Venturelli E, Fenoglio C, et al. CCL8/MCP-2 association analysis in patients with Alzheimer's disease and frontotemporal lobar degeneration [J]. J Neurol, 2009, 256(8): 1379-1381.
[41] Lu Y, Jiang BC, Cao DL, et al. Chemokine CCL8 and its receptor CCR5 in the spinal cord are involved in visceral pain induced by experimental colitis in mice [J]. Brain Res Bull, 2017, 135: 170-178.
[42] Ravindran C, Cheng YC, Liang SM. CpG-ODNs induces up-regulated expression of chemokine CCL9 in mouse macrophages and microglia [J]. Cell Immunol, 2010, 260(2): 113-118.
[43] Akhtar F, Rouse CA, Catano G, et al. Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress [J]. J Neuroinflammation, 2017, 14(1): 195.
[44] Parajuli B, Horiuchi H, Mizuno T, et al. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia [J]. Glia, 2015, 63(12): 2274-2284.
[45] Zhu C, Xu B, Sun X, et al. Targeting CCR3 to reduce amyloid-β production, Tau hyperphosphorylation, and synaptic loss in a mouse model of Alzheimer's disease [J]. Mol Neurobiol. 2017, 54(10): 7964-7978.
[46] Novak P, Cente M, Kosikova N, et al. Stress-induced alterations of immune profile in animals suffering by tau protein-driven neurodegeneration [J]. Cell Mol Neurobiol, 2018, 38(1): 243-259.
[47] Yeo IJ, Lee MJ, Baek A, et al. A dual inhibitor of the proteasome catalytic subunits LMP2 and Y attenuates disease progression in mouse models of Alzheimer's disease [J]. Sci Rep, 2019, 9(1): 18393.
[48] Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression [J]. J Immunol, 2006, 177(10): 7303-7311.
[49] Stuart MJ, Singhal G, Baune BT. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders [J]. Front Cell Neurosci, 2015, 9: 357.
[50] Mendez-Enriquez E, García-Zepeda EA. The multiple faces of CCL13 in immunity and inflammation [J]. Inflammopharmacology, 2013, 21(6): 397-406.
[51] Jaguin M, Houlbert N, Fardel O, et al. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin [J]. Cell Immunol, 2013, 281(1): 51-61.
[52] Shimizu Y, Dobashi K. CC-chemokine CCL15 expression and possible implications for the pathogenesis of IgE-related severe asthma [J]. Mediators Inflamm, 2012, 2012: 475253.
[53] Hochstrasser T, Marksteiner J, Defrancesco M, et al. Two blood monocytic biomarkers (CCL15 and p21) combined with the mini-mental state examination discriminate Alzheimer's disease patients from healthy subjects [J]. Dement Geriatr Cogn Dis Extra, 2011, 1(1): 297-309.
[54] Cappello P, Fraone T, Barberis L, et al. CC-chemokine ligand 16 induces a novel maturation program in human immature monocyte-derived dendritic cells [J]. J Immunol, 2006, 177(9): 6143-6151.
[55] Staples KJ, Hinks TS, Ward JA, et al. Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17 [J]. J Allergy Clin Immunol, 2012, 130(6): 1404-1412.
[56] Verma R, Kim JY. 1,25-dihydroxyvitamin D3 facilitates M2 polarization and upregulates TLR10 expression on human microglial cells [J]. Neuroimmunomodulation, 2016, 23(2): 75-80.
[57] Schraufstatter IU, Zhao M, Khaldoyanidi SK, et al. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum [J]. Immunology, 2012, 135(4): 287-298.
[58] Iijima N, Yanagawa Y, Clingan JM, et al. CCR7-mediated c-Jun N-terminal kinase activation regulates cell migration in mature dendritic cells [J]. Int Immunol, 2005, 17(9): 1201-1212.
[59] Le Page A, Bourgade K, Lamoureux J, et al. NK cells are activated in amnestic mild cognitive impairment but not in mild Alzheimer's disease patients [J]. J Alzheimers Dis, 2015, 46(1): 93-107.
[60] Serafini B, Columba-Cabezas S, Di Rosa F, et al. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis [J]. Am J Pathol, 2000, 157(6): 1991-2002.
[61] Sun Y, Guo Y, Feng X, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease [J]. J Neuroinflammation, 2020, 17(1): 72.
[62] Dogan RN, Long N, Forde E, et al. CCL22 regulates experimental autoimmune encephalomyelitis by controlling inflammatory macrophage accumulation and effector function [J]. J Leukoc Biol. 2011, 89(1): 93-104.
[63] Xiao T, Kagami S, Saeki H, et al. Both IL-4 and IL-13 inhibit the TNF-alpha and IFN-gamma enhanced MDC production in a human keratinocyte cell line, HaCaT cells [J]. J Dermatol Sci. 2003, 31(2): 111-117.
[64] Trombetta BA, Carlyle BC, Koenig AM, et al. The technical reliability and biotemporal stability of cerebrospinal fluid biomarkers for profiling multiple pathophysiologies in Alzheimer's disease [J]. PLoS One, 2018, 13(3): e0193707.
[65] Novak H, Müller A, Harrer N, et al. CCL23 expression is induced by IL-4 in a STAT6-dependent fashion [J]. J Immunol. 2007, 178(7): 4335-4341.
[66] Faura J, Bustamante A, Penalba A, et al. CCL23: a chemokine associated with progression from mild cognitive impairment to Alzheimer's disease [J]. J Alzheimers Dis, 2020, 73(4): 1585-1595.
[67] Kim J, Kim YS, Ko J. CK beta 8/CCL23 induces cell migration via the Gi/Go protein/PLC/PKC delta/NF-kappa B and is involved in inflammatory responses [J]. Life Sci, 2010, 86(9-10): 300-308.
[68] Makita N, Hizukuri Y, Yamashiro K, et al. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration [J]. Int Immunol. 2015, 27(3): 131-141.
[69] Ferguson SA, Varma V, Sloper D, et al. Increased inflammation in BA21 brain tissue from African Americans with Alzheimer's disease [J]. Metab Brain Dis, 2020, 35(1): 121-133.
[70] Shou J, Peng J, Zhao Z, et al. CCL26 and CCR3 are associated with the acute inflammatory response in the CNS in experimental autoimmune encephalomyelitis [J]. J Neuroimmunol, 2019, 333: 576967.
[71] Chen C, Perry TL, Chitko-McKown CG, et al. The regulatory actions of retinoic acid on M2 polarization of porcine macrophages [J]. Dev Comp Immunol, 2019, 98: 20-33.
[72] Blatt NL, Khaiboullin TI, Lombardi VC, et al. The skin-brain connection hypothesis, bringing together CCL27-mediated T-cell activation in the skin and neural cell damage in the adult brain [J]. Front Immunol, 2017, 7: 683.
[73] Khaibullin T, Ivanova V, Martynova E, et al. Elevated levels of proinflammatory cytokines in cerebrospinal fluid of multiple sclerosis patients [J]. Front Immunol, 2017, 8: 531.
[74] Ogawa H, Iimura M, Eckmann L, et al. Regulated production of the chemokine CCL28 in human colon epithelium [J]. Am J Physiol Gastrointest Liver Physiol, 2004, 287(5): G1062-G1069.
[75] Kiyota T, Yamamoto M, Xiong H, et al. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction [J]. PLoS One, 2009, 4(7): e6197.
[76] Joly-Amado A, Hunter J, Quadri Z, et al. CCL2 overexpression in the brain promotes glial activation and accelerates tau pathology in a mouse model of tauopathy [J]. Front Immunol, 2020, 11: 997.
[77] Galimberti D, Schoonenboom N, Scheltens P, et al. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease [J]. Arch Neurol, 2006, 63(4): 538-543.
[78] Galimberti D, Schoonenboom N, Scheltens P, et al. Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration [J]. Neurology, 2006, 66(1): 146-147.
[79] Toyomitsu E, Tsuda M, Yamashita T, et al. CCL2 promotes P2X4 receptor trafficking to the cell surface of microglia [J]. Purinergic Signal, 2012, 8(2): 301-310.
[80] Proost P, Wuyts A, Van Damme J. Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1 [J]. J Leukoc Biol, 1996, 59(1): 67-74.
[81] Galimberti D, Venturelli E, Villa C, et al. MCP-1 A-2518G polymorphism: effect on susceptibility for frontotemporal lobar degeneration and on cerebrospinal fluid MCP-1 levels [J]. J Alzheimers Dis. 2009, 17(1): 125-133.
[82] Guan E, Wang J, Norcross MA. Identification of human macrophage inflammatory proteins 1alpha and 1beta as a native secreted heterodimer [J]. J Biol Chem, 2001, 276(15): 12404-12409.
[83] Passos GF, Figueiredo CP, Prediger RD, et al. Role of the macrophage inflammatory protein-1alpha/CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by beta-amyloid peptide [J]. Am J Pathol, 2009, 175(4): 1586-1597.
[84] Li K, Dai D, Yao L, et al. Association between the macrophage inflammatory protein-l alpha gene polymorphism and Alzheimer's disease in the Chinese population [J]. Neurosci Lett, 2008, 433(2): 125-128.
[85] Verite J, Janet T, Julian A, et al. Peripheral blood mononuclear cells of Alzheimer's disease patients control CCL4 and CXCL10 levels in a human blood brain barrier model [J]. Curr Alzheimer Res, 2017 14(11): 1215-1228.
[86] Zhu M, Allard JS, Zhang Y, et al. Age-related brain expression and regulation of the chemokine CCL4/MIP-1β in APP/PS1 double-transgenic mice [J]. J Neuropathol Exp Neurol. 2014, 73(4): 362-374.
[87] Fülle L, Offermann N, Hansen JN, et al. CCL17 exerts a neuroimmune modulatory function and is expressed in hippocampal neurons [J]. Glia, 2018, 66(10): 2246-2261.
[88] Edwards M, Hall J, Williams B, et al. Molecular markers of amnestic mild cognitive impairment among Mexican Americans [J]. J Alzheimers Dis, 2016, 49(1): 221-228.
[89] Ambrée O, Klassen I, F?rster I, et al. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice [J]. Behav Brain Res, 2016, 314: 87-95.
[90] Columba-Cabezas S, Serafini B, Ambrosini E, et al. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation [J]. J Neuroimmunol, 2002, 130(1-2): 10-21.
[91] Peferoen LA, Vogel DY, Ummenthum K, et al. Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis [J]. J Neuropathol Exp Neurol, 2015, 74(1): 48-63.
[92] Movsesyan N, Ghochikyan A, Mkrtichyan M, et al. Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine - a novel immunotherapeutic strategy [J]. PLoS One, 2008, 3(5): e2124.
[93] Davtyan H, Mkrtichyan M, Movsesyan N, et al. DNA prime-protein boost increased the titer, avidity and persistence of anti-Abeta antibodies in wild-type mice [J]. Gene Ther, 2010, 17(2): 261-271.
[94] Melief J, Koning N, Schuurman KG, et al. Phenotyping primary human microglia: tight regulation of LPS responsiveness [J]. Glia, 2012, 60(10): 1506-1517.
把手榴彈不變成甜蜜的棒棒糖,
因為一個個手榴彈
正在摧殘孩子們幼小的心靈。
讓孩子們快樂吧!
把坦克變成奔跑的玩具汽車,
因為一座座坦克
正在摧毀孩子們的家園。
讓孩子們快樂吧!
把炸彈變成跳動的小皮球
因為一個個炸彈
正在殺害孩子們的親人。
讓孩子們快樂吧!
把地雷變成滾動的足球,
因為一個個地雷
正在阻擋孩子們奔跑的腳步。
我們希望,我們祈盼,
讓戰爭中的孩子有一個家,
溫馨的家;
讓戰爭中的孩子有一個健康的身體,
完好無損的身體;
讓他們離開“寒冷的冬天”,